
NASA Contractor Report 4542

Simulation Reduction Using
the Taguchi Method

F. Mistree, U. Lautenschlager,

S. O. Erikstad, and J. K. Allen

CONTRACT HAG 9-616
October 1993

(NASA-CR-4542)

REOUCTION USING

(Houston Univ.)

SIMULATION

THE TAGUCNI

159 p

METNO0
N94-17082

Unclas

HI/38 0193047

NASA Contractor Report 4542

Simulation Reduction Using
the Taguchi Method

F. Mistree, U. Lautenschlager,
S. O. Erikstad, and J. K. Allen
University of Houston
Houston, Texas

Prepared for
Johnson Space Center
under Grant NAG 9-616

National Aeronautics

and Space Administration

Performance

Analysis Branch

1993

PREFACE

This is the final report from Team "A" concerning NASA Grant NAG 9-616 to the
University of Houston. Our goal for this project was to develop a method to reduce the
number of necessary simulations of real-life scenarios of rocket trajectories and to docu-
ment the feasibility of this method in terms of confidence and reliability. This was to be
accomplished by the use of the Taguchi techniques that form the core of Robust Design.

This project would not have come about without Ivan Johnson and Mike Tigges of the
NASA Johnson Space Center. For this, we are extremely grateful.

Bert Bras, Ravi Reddy, and Janet Allen generously contributed their expertise and
assistance. Thank you.

Dr. J. Sobieski of the NASA Langley Research Center offered many valuable suggestions

for the improvement of this manuscript.

The work described in this report was supported in part by funds provided by NASA
Grant NAG 9-616. The NSF equipment grant 8806811 is also gratefully acknowledged.

Farrokh Mistree

Systems Design Laboratory
Department of Mechanical Engineering

University of Houston
Houston, Texas 77204-4792

Page i

ABSTRACT

A large amount of engineering effort is consumed in conducting experiments to obtain
information needed for making design decisions. Efficiency in generating such informa-
tion is key to meeting market windows, keeping development and manufacturing costs

low, and having high-quality products.

The principal focus of this project is to develop and implement applications of Taguchi's

quality engineering techniques. In particular, we show how these techniques are applied
for reducing the number of experiments for trajectory simulation of the LifeSat space
vehicle. Orthogonal arrays are used to study many parameters simultaneously with a
minimum of time and resources. Taguchi's signal-to-noise ratio is being employed to
measure quality. A compromise Decision Support Problem and Robust Design are appli-
ed to demonstrate how quality is designed into a product in the early stages of designing.

Page ii

CONTENTS

PREFACE
ABSTRACT
CONTENTS
FIGURES
TABLES

i
ii

Ill

vi
vii

CHAPTER 1

EFFICIENT EXPERIMENTATION FOR LIFESAT TRAJECTORY

SIMULATION
1.1 BACKGROUND AND MOTIVATION

1.1.1 Simulation of the Trajectory of the LifeSat Space Vehicle
1.1.2 Introduction to Monte Carlo Simulation and Alternate

Approaches
1.2 AN INTRODUCTION TO STOCHASTIC UNCERTAINTY AND

PROBABILITY DISTRIBUTIONS
1.3 OUR FRAME OF REFERENCE

1.3.1 The Taguchi Method and Robust Design
1.3.2 The Compromise DSP

1.4 FOCUS AND GOAL
1.5 STRATEGY FOR SOLUTION AND VALIDATION PHILOSOPHY
1.6 ORGANIZATION OF THIS REPORT

1
2
2

4

5
8
8
9

10
12
12

CHAPTER 2

ON QUALITY DESIGN AND SIMULATION REDUCTION
2.1 QUALITY, QUALITY LOSS, AND ROBUST DESIGN

2.1.1 The Quality Loss Function
2.1.2 Factors Affecting Quality
2.1.3 Signal-to-Noise Ratio and Robust Design

2.2 AN OVERVIEW ABOUT SIMULATION

2.2.1 Terminology and Characteristics of Simulation
2.2.2 Introduction to Monte Carlo Simulation

2.2.3 Simulation Based on Taylor Series Expansion
2.3 INTRODUCTION TO ORTHOGONAL ARRAYS

2.3.1 Factor Experiments
2.3.2 The Concept of Orthogonality in Orthogonal Arrays
2.3.3 An Automated Way for Three-Level Orthogonal Array Creation

2.4 SIMULATION BASED ON ORTHOGONAL ARRAYS

2.4.1 Simulation of Variation in Noise Factors Based on Orthogonal

Arrays
2.4.2 An Example of Orthogonal Array Based Simulation

2.5 INTRODUCTION TO ANALYSIS OF VARIANCE
2.5.1 ANOVA Notations

2.5.2 ANOVA Terms, Equations, and Example
2.6 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

15
16
16
17
18
21
21
23
26
27
28
29
31
34

34
35
37
37
38
43

Page iii

CHAPTER 3

THE LIFESAT SPACE VEHICLE MODEL
3.1 THE ANALYSIS MODEL FOR THE LIFESAT SPACE VEHICLE

3.1.1 Nomenclature

3.1.2 A Model of Gravitational and Aerodynamic Forces
3.1.3 Coordinate Systems
3.1.4 The Atmosphere Model
3.1.5 Performance Parameter

3.2 DISTRIBUTIONS OF THE LIFESAT MODEL PARAMETERS

3.2.1 Uniformly Distributed Parameters
3.2.2 Normally Distributed Parameters

3.3 MODEL IMPLEMENTATION AND VALIDATION

3.3.1 Implementation of a Simplified LifeSat Model
3.3.2 Validation of Model Implementation

3.4 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

45
46

46
47
48
51

52
53
54
56
60
61
61
64

CHAPTER 4

ORTHOGONAL ARRAY BASED SIMULATION OF THE LIFESAT MODEL 65
4.1 INITIAL LIFESAT MODEL SIMULATION 66

4.1.1 Template Development for Orthogonal Array 66
4.1.2 Initial Footprints for Monte Carlo and Orthogonal Array

Simulations 68

4.1.3 System Performance for Monte Carlo and Orthogonal Array
Simulations 71

4.1.4 Comparison of the Statistical Parameters 74

4.1.5 Analysis of Orthogonal Array Experiments with Respect to the
Geodetic Latitude 75

4.2 STATISTICAL CONFIDENCE OF ORTHOGONAL ARRAY BASED
SIMULATION 77

4.3 ANALYSIS OF VARIANCE FOR THE TRAJECTORY SIMULATION 80
4.3.1 Factor Contributions with Monte Carlo Simulation 80

4.3.2 Factor Contributions with ANOVA and Orthogonal Array
Simulation 82

4.4 ROBUST DESIGN FOR THE TRAJECTORY SIMULATION 84

4.4.1 Designing Experiments for Robust Design 84
4.4.2 Evaluation of Results from Robust Design Study Using Signal-to-

Noise Ratio, Standard Deviation, and Mean 85
4.5 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT? 91

CHAPTER 5
ROBUST DESIGN USING A COMPROMISE DSP 93
5.1 THE COMPROMISE DSP AND LEXICOGRAPHIC MINIMIZATION 94
5.2 ROBUST DESIGN USING THE COMPROMISE DSP 96

5.2.1 A Compromise DSP Formulation for the Robust Design of the
LifeSat Trajectory 96

5.2.2 Model Exploration 100

5.2.3 Solving the Compromise DSP for Four Scenarios 102
5.3 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT? 108

Page iv r

CHAPTER 6

CLOSURE

6.1 REVIEW OF THE GOAL FOR THE REPORT, RELATED
QUESTIONS, AND CONCLUSIONS

6.2 FUTURE WORK
6.3 CLOSING REMARKS

109

110
112
113

REFERENCES

Appendix A

Flightsimulation Program Source Code

Appendix B

Description of the ANOVA Program

Appendix C

ANOVA Program Source Code

114

A1

B1

C1

Page v

FIGURES

1.1 - Flight Conditions
1.2 - Uniform Probability Distribution
1.3 - Illustration of Normal Probability Density Function
1.4 - Trajectory Simulation Modules

2.1 - Quality Loss Function [Phadke, 1989]
2.2 - Block Diagram of a Produc_Process - P-Diagram [Phadke, 1989]
2.3 - A Graphical Representation of Robust Design
2.4 - Function Mean Value for Monte Carlo Simulation
2.5 - Function Standard Deviation for Monte Carlo Simulation

2.6 - Histograms for Two Monte Carlo Simulations
2.7 - Balancing Property in Orthogonal Arrays
2.8 - Latin Squares for Three Levels
2.9 - Orthogonal Array L9 Divided in Three Blocks
2.10 - Orthogonal Array L27 with 13 Factors (A - M) on Three Levels
2.11 - Function Values and Mean Using Orthogonal Arrays
2.12 - Standard Deviation for Orthogonal Arrays

3.1 - Cartesian and Polar Coordinate System

3.2 - Illustration of the Flight Path Angle 7

3.3 - Illustration of the Azimuth Angle ct
3.4 - Relation of Angle of Attack and Drag Coefficient
3.5 - Geodetic Latitude vs. Altitude

3.6 - Hight-Time vs. Altitude and Latitude
3.7 - Hight-Time vs. Velocity

4.1 - Footprints of Two Monte Carlo Simulations Using 1000 Samples
4.2 - Footprints for Orthogonal Array Based Simulation with 27 Experiments
4.3 - Maximum Acceleration vs. Geodetic Latitude

4.4 - Maximum Acceleration vs. Longitude
4.5 - Maximum Dynamic Pressure vs. Maximum Acceleration
4.6 - Histogram for Geodetic Latitude
4.7 - Mean Value for Geodetic Latitude for each Experiment
4.8 - Standard Deviation for Geodetic Latitude

4.9 - Distribution of Average Standard Deviation for Ten Monte Carlo and
Ten Orthogonal Array Simulations for the Geodetic Latitude

4.10 - Average Sensitivity of Geodetic Latitude to Factor Levels
4.11 - Average Sensitivity of Standard Deviation to Factor Levels

5.1 - Mathematical Form of a Compromise DSP
5.2 - Mathematical Formulation of a Compromise DSP for the Robust

Design of the LifeSat Trajectory
5.3 - Contour Plots of Initial Velocity vs. Standard Deviation and SN

Ratio for Geodetic Latitude
5.4 - Contour Plots of Vehicle Mass vs. Standard Deviation and SN

Ratio for Geodetic Latitude

5.5 - Convergence of Deviation Function for Three Priority Levels
5.6 - Convergence of Design Variables for Three Different Starting Points

4

6
7

11

17
17

20
25
25
26
30
31
32
33

35
36

48

5O

51

56
62
63
63

69
70
72
72
73
75
76
77

79
88
89

94

99

101

102
106
107

Page vi

TABLES

2.1 - Full Factorial Experiment with Two Factors at Two Levels
2.2 - Full Factorial Design Comparison with Taguchi Design
2.3 - Standard Orthogonal Array L9

2.4 - Orthogonal Array L8
2.5 - Two-Level Experiment Analysis with Three Factors
2.6 - Typical Analysis of Variance Table

3.1
3.2
3.3

3,4-

3.5-
3.6-
3.7-

4.1 -

4.2-
4.3-
4.4-
4.5-

4.6-

4.7-

4.8-
4.9-
4.10
4.11
4.12
4.13
4.14

5.1 -

5.2-
5.3-
5.4-
5.5-
5.6-

State Descriptions for Position and Velocity
Angle of Attack Related Aerodynamic Coefficients
Vehicle and Chute Dispersions for Aerodynamic Coefficients and
Reference Area

Initial State Dispersions for Position
Initial State Dispersions for Velocity
Initial State for Nominal Flight Simulation
Flight Parameters and Final State for Nominal Hight Simulation

Initial State Data
Parameter Statistics

Landing Range Statistics
Statistics for Performance Parameter

Relative Differences of Parameter Statistics for Nominal, Monte

Carlo, and Orthogonal Array Simulation
Distribution of Means and Standard Deviations for Ten Monte

Carlo Simulation and Ten Orthogonal Array Simulation Runs
Parameter Statistics
Factor Contribution to the Variation of Geodetic Latitude
Results and ANOVA Table for the Variation of Geodetic Latitude

- Factor Levels for Robust Design Project
- Experiments for Robust Design Project
- Experiments for Robust Design Project
- Level Means for System Performance
- ANOVA Table for the Variation of Geodetic Latitude

Scenarios for the Design of the LifeSat Vehicle

Starting Points for Design Variables
Results with Starting Point 1
Results with Starting Point 2
Results with Starting Point 3
Comparison of Equivalent Designs

28
29
3O
39
39
42

49
55

57
60

6O
62
62

67
67
70
73

74

78
81
82
83
85
85
86
87
89

103
103
104
105
105
107

Page vii

CI-IAVTER 1

EFFICIENT EXPERIMENTATION FOR

LIFESAT TRAJECTORY SIMULATION

The motivation for this study, namely NASA's request to substitute for Monte Carlo
analysis a more efficient tool in order to reduce the number of simulations for design of
space vehicle trajectories, is discussed in Section 1.1. Specifically, the trajectory of the
LifeSat space vehicle is presented with a description of the problem requirements. Noise
factors are the source of deviations from the desired landing target when the vehicle is
deorbited. In Section 1.2, we introduce uncertainty in system performance due to these
noise factors and show how their distributions are described. Statistical confidence about

the magnitude of variation has to be established.

Our frame of reference combines the philosophy of Taguchi's quality engineering tech-
niques and the compromise Decision Support Problem, DSP. The signal-to-noise ratio is
a measure of quality. Orthogonal arrays are the basic tools for simulation reduction,

while maintaining or improving quality. We further introduce a method for improvement
of design quality when trade-offs between multiple objectives is required. This is shown
in Section 1.3.

The main focus of the study and goals is discussed in Section 1.4. Also, a strategy for
solution is provided in Section 1.5. The organization of this report is included in the last
section, Section 1.6.

Efficient Experimentation for LifeSat Trajectory Simulation Page 1

1.1 BACKGROUND AND MOTIVATION

A great deal of engineering effort is consumed in conducting experiments to obtain
information needed to guide decisions related to a particular product. Efficiency in gene-
rating such information is the key to meeting market windows, keeping development and
manufacturing costs low, and creating high-quality products.

The performance of complex engineering systems and the quality of products or

processes generally depend on many factors. Taguchi separates these factors into two
main groups: control factors and noise factors [Ross, 1988]. Control factors are those
factors which are set by the manufacturer; noise factors are those factors over which the
manufacturer has no direct control but which vary in the environment of the system or

product [Phadke, 1989].

Frequently it is necessary to perform a statistical analysis on the response of a system to
investigate the system performance due to the factors. The response of a system, or a
function (linear or nonlinear) is typically quantified by the output and information about
the numerical statistics.

In the following section, we introduce the simulation of the LifeSat space vehicle trajec-
tory which is employed by NASA JSC [McCleary, 1991]. In this report we are con-
cerned with problems involved in this simulation and suggest ways to overcome them.

1.1.1 Simulation of the Trajectory of the LifeSat Space Vehicle

NASA uses a program called Simulation and Optimization of Rocket Trajectories, SORT
[McCleary, 1991] for the computation of trajectory aspects for the design of space vehi-
cles. One important functional requirement of the design is its ability to follow a prede-
termined trajectory. For instance, it is necessary for the space vehicle to land within a
desired target area. Naturally deviations from this trajectory will occur due to dispersions
in vehicle and environmental parameters; e.g., initial state, atmospheric conditions,

winds, vehicle and parachute aerodynamics, and vehicle weight. These deviations may
make the achievement of the design goals uncertain. Simulation results provide an indi-
cation as to how the trajectory is influenced by changes in actual flight and operating
conditions due to uncertainties.

The SORT program uses Monte Carlo simulations [Press et al., 1990] to obtain simula-
tions of real-life scenarios of rocket trajectories. Different trajectory parameters---e.g.,
the initial state and various atmospheric and aerodynamic parameters--are varied (dis-

persed), and the simulation is carried out over the range of dispersed parameter values.
Monte Carlo analysis capabilities implemented into SORT [McCleary, 1991] provide
tools to disperse several state, environmental, and vehicle parameters. Furthermore, post-
processing tools are available and statistical data concerning the individual factor contri-
butions on the dispersions are generated.

One example, the case studied here in which the LifeSat space vehicle is deorbited, is
given in a memo from McDonnell Douglas [McCleary, 1991]. We define the following
nomenclature:

deorbit
trim bum

- the process of leaving space and returning to Earth,
- rocket burn to change position and velocity of vehicle,

Page 2

entry interface
g-load

peak
Mach number

- altitude where vehicle enters atmosphere of Earth,
- a measure of acceleration in multiples of the acceleration of

gravity,
- maximum of a particular parameter,
- ratio of velocity and speed of sound.

The LifeSat vehicle is a satellite which weighs approximately 1560 kg. In the satellite,
experiments on small animals (mice) will be performed in space. In order to evaluate the
results of the experiments, the animals must be brought back alive in order to evaluate the
results of the experiments. There are several possibilities to deorbit the vehicle. These
have being investigated and are explained in the problem description, as follows:

"A deorbit burn is used in order to deorbit the LifeSat vehicle from space. After
this burn it must be [decided] whether or not a correction of the vehicle's state
vector is necessary. Three scenarios are employed to obtain the information if

_, no state vector correction is necessary after deorbit burn,
a navigational update and trim burn at 4000 km altitude is required, or

_ a trim burn at entry interface (EI) at 121 km altitude is necessary.

A Monte Carlo analysis has been performed in order to determine whether a trim
burn is needed and the necessary g-load to land within the desired target area.
The nominal targeted landing position is the missile range in White Sands, New
Mexico, which is at 33.6 degrees (deg) geodetic latitude and -106.65 deg longi-
tude. The available impact area ranges from 33.4 deg to 33.8 deg geodetic lati-
tude and [from] -106.7 to -106.55 deg longitude. For the three mentioned sce-
narios, five EI scenarios are analyzed. They are characterized by the nominal
peak g-load which can range from 11 to 15. Each simulation is based on the
initial state at entry interface. The Monte Carlo results of one analysis run are
each based on 1109 dispersed cases in order to obtain the desired confidence of
95% and reliability of 99.73%."

In Figure 1.1, three different flight conditions of the vehicle during trajectory simulation
are presented. These conditions are

[] vehicle at EI state at 121 km altitude,

:_ vehicle after drogue chute deployment at Mach number M = 1.5, and
:_ vehicle after main parachute deployment at 3 km altitude.

After leaving the entry interface the major part of the flight is flown without parachutes.
Because of aerodynamic drag forces the vehicle slows down and the drogue chutes are
deployed at a height of approximately 20 km. At this point, the vehicle now has an
approximately vertical trajectory (Sec. 3,3.2) and is very sensitive to winds. At 3 km
altitude, the main chutes are deployed and the vehicle is supposed to land close to the
desired target area.

Currently, the trajectory of the LifeSat vehicle is simulated with Monte Carlo simulation.
In the following section, we briefly discuss the Monte Carlo simulation technique for tra-
jectory evaluation and introduce alternate approaches to Monte Carlo simulation.

Efficient Experimentation for LifeSat Trajectory Simulation Page 3

Entry Interface Altitude: 121.9 km

Drogue Chute Deploy: M = 1.5

Main Chute Deploy Altitude: 3.05 km

Figure 1.1 - Flight Conditions

1.1.2 Introduction to Monte Carlo Simulation and Alternate Approaches

In the Monte Carlo Simulation [Press et al., 1990], a random number generator is used to
simulate a large number of combinations of noise factors and parameters within toler-
ances. The value of the response is computed for each testing condition and the mean
and the variance of the response are then calculated.

For the optimization of rocket trajectories, NASA JSC employs Monte Carlo simulation
in order to evaluate the system performance under uncertain conditions. To obtain accu-
rate estimates of mean and variance of the system performance, Monte Carlo simulation
requires evaluation of the response of the system under a large number of testing condi-
tions (1109). Hence, only a limited number of scenarios can be examined completely.

However, changes in the vehicle's proposed dimensions during design require repeated
simulations. This can be very expensive, if

t-I

the simulation requires a great deal of computational time, and
if we also want to compare many combinations of control factors and dif-

ferent designs.

Page 4

In order to reduce the large number of Monte Carlo simulations, studies have been under-

taken to choose dispersed input factors systematically [Bogner, 1989]. Bogner presents
an alternate approach to Monte Carlo simulation [Bogner, 1989]. In this approach differ-
ent methods to scatter input parameters are considered in order to obtain more informa-
tion about operating conditions further away from the nominal mean. Since with Monte
Carlo simulation most output values are placed near the mean, the idea is to place more

samples of the input parameters in regions with higher o-levels (multiple of standard

deviation o) to obtain a better sampling of the output. Four different methods were

examined for the systematic dispersion (scattering) of parameters. These methods are as
follows:

scatter systematically throughout volume of input space,
scatter uniformly but randomly throughout volume,
scatter uniformly but randomly in radius/likelihood of occurrence, and

-1 scatter uniformly in each t_-level for randomly generated points.

In the first and third cases, major problems occur for higher dimensional problems. The

second case has a majority of outputs placed outside of the region of interest which is (kt

+ 3_). The fourth case is chosen because the scattering is uniform in o-level regardless

of dimension. Each output is weighted according to the probability of the input vector so
that the calculated statistics are still valid.

Conclusions are drawn from a six-dimensional function which is assumed to be represen-

tative for lower and higher dimensional cases. For comparison with Monte Carlo tech-
nique, a sample size of 1000 is chosen. Another comparison is done for a problem
concerning the Aeroassist Flight Experiment, a NASA spacecraft which is scheduled for
launch in 1994. In this example, eight runs are made with 20,000 samples each. Al-
though that study was developed to provide a better estimation of operating conditions
further away from the mean, the savings of time and resources are low. Before we
describe our approach to the problem we first introduce stochastic uncertainty and prob-
ability distributions. The effects of uncertainty or noise determine the deviation from the
desired system performance.

1.2 AN INTRODUCTION TO STOCHASTIC UNCERTAINTY AND

PROBABILITY DISTRIBUTIONS

Stochastic uncertainty in engineering systems occurs during the design process of these
systems and during the system performance. It arises from a lack of knowledge of the
exact value of a design or environmental parameter due to a process beyond the control of
a designer. However, from past observations, the parameters may be known to lie in a
range. In other words, a designer might have a statistically significant sample set which
enables that designer to represent the parameter with a probability density distribution
[Sokal and Rohlf, 1981]. In this study, we model uncertainty of parameters with uniform
distributions and Gaussian or normal distributions. Parameters which have one of these

distributions are also called dispersed parameters.

A parameter is uniformly distributed if any number in a specified range is just as likely as
any other. In other words, a uniformly distributed parameter is a random number with

Efficient Experimentation for LifeSat Trajectory Simulation Page 5

equal or uniform probability distribution. Engineering specifications are generally writ-

ten as kt + A0, where IXrepresents the mean value of a parameter and A0 is the tolerance.

The probability distribution of a uniformly distributed parameter is shown in Figure 1.2.

The probability distribution, also called probability density function p(x), of a uniformly
distributed parameter x is defined as

Probability
Distribution

p(x)

I

X
la - AO Mean la I.t+ AO

Figure 1.2 - Uniform Probability Distribution

f 1
"2_ ° p - A o _<x _</Z + A op(x)

0 otherwise

(1.1)

We assume that the total probability is one in a parameter range from IX- A0 to Ix + ,50.

A parameter is normally distributed (Gaussian distribution) if its normal probability den-
sity function can be represented by the expression

l(x-#) 2

1 2 o-2 (1.2)
p(x)=_e

where Ix is the mean and cr is the standard deviation. Ix and _ determine the shape and

location of the distribution. In Figure 1.3, we present three different probability density
functions for normal distributions. The two left curves differ only in the standard devi-

ation. The right curve has a smaller standard deviation than the others.

The value p(x) represents the probability density of x. The curve is symmetrical around
the mean and the area below the curve is distributed as

Page 6

kt + t_ contains 68.26% of the area,

[t + 2t_ contains 95.46% of the area, and

t + 3t contains 99.73% of the area.

ta = 4.0

_= 0.5

/

6

Figure 1.3 - Illustration of Normal Probability Density Function

Transformation of these values provides information about the c value for a given

percentage of area; e.g.,

50% of the area falls between tx + 0.674 _,

95% of the area falls between It + 1.960 t_, and

99% of the area fails between kt + 2.576 or.

For calculation of these quantifies see [Sokal and Rohlf, 1981]. It is common engineering

practice that the range between _t + 36 is considered to be the tolerance range for a manu-

facturing part or a parameter dimension.

We observe that uncertainty due to dispersed system and environmental parameters can
be modeled by a uniform or normal distribution. To be able to make design decisions it
is necessary to incorporate this uncertainty in the design model; for example, see [Zhou,
1992]. This improves our understanding of the state of a design by including the per-
formance of the product within its environment. Taguchi's quality engineering and
robust design offer a useful method to evaluate the performance of a system when uncer-
tainty is present and to measure the quality of the design state. In the next section, we

introduce this method and explain Taguchi's philosophy. The compromise DSP (Deci-

sion Support Problem) is introduced as a model for decision support in design. We are

Efficient Experimentation for LifeSat Trajectory Simulation Page 7

interested in modeling quality characteristics into a design model to provide a means for
making better decisions.

1.3 OUR FRAME OF REFERENCE

1.3.1 The Taguchi Method and Robust Design

Products have characteristics that describe their performance relative to customer require-
ments or expectations [Ross, 1988]. Characteristics such as economy, weight of a com-
ponent, or the durability of a switch concern the customer. The quality of a product/
process is measured in terms of these characteristics. Typically, the quality is also

measured throughout its life Cycle. The ideal quality a customer can expect is that every

product delivers the target performance each time the product is used under all intended
operating conditions and throughout its intended life and that there will be no harmful
side effects [Phadke, 1989]. Following Taguchi [Taguchi, 1987] we measure the quality
of a product in terms of the total loss to society due to functional variation and harmful
side effects. The ideal quality loss is zero.

The challenge for a designer to design high-quality products is obvious. Driven by the
need to compete on price and performance, quality-conscious designers are increasingly
aware of the need to improve products and processes [Roy, 1990]. Delivering a high-
quality product at low cost is an interdisciplinary problem involving engineering, eco-
nomics, statistics, and management [Phadke, 1989]. In the cost of a product, we must

consider the operating cost, the manufacturing cost, and the cost of new product develop-
ment. A high-quality product has low costs in all three categories. Robust design is a
systematic method for keeping the producer's cost low while delivering a high-quality
product and keeping the operating cost low. Taguchi espoused an excellent philosophy

for quality control in the manufacturing industries [Roy, 1990]. His philosophy is found-
ed on three very simple and fundamental concepts. These concepts are stated in Roy as
follows [Roy, 1990]:

Quality should be designed into the product and not inspected into it.

Quality is best achieved by minimizing the deviation from the target.
The product should be designed so that it is immune to uncontrollable
environmental factors.

The cost of quality should be measured as a function of deviation from
the standard and the losses should be measured system-wide.

Quality concepts are based on the philosophy of prevention. The product design must be
so robust that it is immune to the influence of uncontrolled environmental factors which

are known as noise factors .[Roy, 1990]. We want a leading indicator Of quality by
which we can evaluate the effect of changing a particular design parameter on the

product's performance. This indicator is called signal-to-noise ratio. It isolates the sensi-
tivity of the system's performance to noise factors and converts a set of observations into
a single number.

A product under investigation may exhibit a distribution which has a mean value that
differs from the target value. The first step towards improving quality is to achieve a

Page 8

distribution as close to the target value as possible. Efficient experimentation is required

to find dependable information with minimum time and resources about the design pa-

rameters [Phadke, 1989]. Taguchi designs experiments using orthogonal arrays which
make the design of experiments easy and consistent. The power of orthogonal arrays is
their ability to evaluate several factors with a minimum number of experiments.

The signal-to-noise ratio is being employed to measure quality and orthogonal arrays to
study many design parameters simultaneously with a minimum amount of time and
resources. We have integrated these into the compromise DSP in order to support design
decisions in the early stages of design. The compromise DSP is introduced in the follow-
ing section.

1.3.2 The Compromise DSP

Compromise DSPs (Decision Support Problem) are used to model engineering decisions
involving multiple trade-offs [Mistree et al., 1992]. The compromise DSP is a hybrid
multiobjective programming model [Bascaran et al., 1987; Karandikar and Mistree, 1991;
Mistree et al., 1992]. It incorporates concepts from both traditional Mathematical Pro-
gramming and Goal Programming (GP). The compromise DSP is a major component of

the DSIDES (Decision Support In the Design of Engineering Systems) system [Mistree
and Bras, 1992]. It is similar to GP in that the multiple objectives are formulated as

system goals involving both system and deviation variables and the deviation function is
solely a function of the goal deviation variables. This is in contrast to traditional Mathe-
matical Programming where multiple objectives are modeled as a weighted function of
the system variables only. The concept of system constraints is retained from the tra-
ditional constrained optimization formulation. However, unlike traditional Mathematical
Programming and GP, the compromise DSP places special emphasis on the bounds of the
system variables. In the compromise DSP, contrary to the GP formulation in which
everything is converted into goals, constraints and bounds are handled separately from
the system goals. In the compromise formulation, the set of system constraints and

bounds defines the feasible design space and the sets of system goals define the aspira-

tion space. For feasibility, the system constraints and bounds must be satisfied. A

satisficing solution then is that feasible point which achieves the system goals as far as
possible. The solution to this problem represents a trade-off between that which is
desired (as modeled by the aspiration space) and that which can be achieved (as modeled
by the design space). The compromise DSP is stated as follows:

GIVEN An alternative that is to be improved through modification.

Assumptions used to model the domain of interest.

The system parameters.

The goals for the design.

FIND The values of the independent system variables (they describe
the physical attributes of an artifact).
The values of the deviation variables (they indicate the extent

to which the goals are achieved).

SATISFY The system constraints that must be satisfied for the solution
to be feasible.

Efficient Experimentation for LifeSat Trajectory Simulation Page 9

The system goals that must achieve a specified target value as
far as possible.

The lower and upper bounds on the system variables.
Bounds on the deviation variables.

MINIMIZE The deviation function which is a measure of the deviation of

the system performance from that implied by the set of goals
and associated priority levels or relative weights.

A compromise DSP for the LifeSat model is developed in Chapter 5. The goals are based
on the quality characteristics of meeting the target and having a robust design against
noise factors.

1.4 FOCUS AND GOAL

Our principal focus in this study is to develop and implement applications of Taguchi's
techniques for quality engineering and to establish its validity for systems which require a
high level of reliability in performance. With this approach we want to reduce the num-
ber of simulations for LifeSat trajectory. The main difference in this study to standard

applications of Taguchi's techniques is the different level on which we are approaching
the LifeSat simulation problem. The focus is on noise factors and their contributions to

performance variation for one particular design of the vehicle. A robust design study and
quality improvement using the compromise DSP are on a higher level, where we are
interested in the design of the vehicle in particular. The questions which are worthy of
investigation are as follows:

Is it possible to reduce a large number of Monte Carlo simulations by us-
ing Orthogonal Array experiments?

:_ What is the statistical confidence level to which the results from Monte

Carlo simulations and orthogonal array based simulations are equivalent?
[] How can we identify factor contributions to variation in system

performance?
[] Are we able to improve the quality of a design by using the signal-to-noise

ratio?

[] Is it possible to predict the factor levels for best system performance using
robust design?

:_ What are the advantages and limitations of the approach?

Our principal goal is to find answers to these questions. In order to achieve this goal, our
specific subgoals are as follows:

to develop an understanding of Taguchi's quality technique and what is in-
volved with it,

to develop and implement a simulation model to study the effects of the
technique in simulation, and

"1 to develop tools which support human decision making.

In Figure 1.4, we present a diagram of modules involved in the simulation of the LifeSat
trajectory using orthogonal arrays. These modules can be classified as modules used to
perform the simulation and post-processing tools.

Page 10

Orthogonal Array LifeSat Model Control Factors
Algorithm Noise Factors

Chapter 2 Chapter 3 Chapter 3

I TSIMOA J
Chapters 2, 3, 4, 5 _,

System Performance:
• Landing Position

• Performance Parameter

Chapters 4, 5

ANOVA

Chapters 2, 4
Robust Design

Chapters 2, 4

Factor Design Improvement
Contribution

,_._[DSIDESChapter 5 t

High-Quality
Product

Figure 1.4 - Trajectory Simulation Modules

An algorithm to create orthogonal arrays is one module for the simulation program

TSIMOA (Trajectory SIMulation with Orthogonal Arrays). This is discussed in Chapter
2. In order to perform simulations with orth0gonai arrays, we need information about
factors and their dispersions which is provided in Chapter 3 along with the LifeSat model.
The model is implemented in TSIMOA and the factor information is used as input data.
The theory for quality engineering is explained in Chapter 2 and the LifeSat model is
discussed in Chapter 3. This theory is applied to the LifeSat model as described in
Chapters 4 and 5 to obtain and evaluate simulation results using TSIMOA. The simu-
lation results are then post-processed by using analysis of variance (ANOVA), robust
design, or a compromise DSP. The implementation of DSIDES provides a capable tool
for design improvements. As a result, we expect to obtain a high-quality product.

Efficient Experimentation for LifeSat Trajectory Simulation Page 11

Because we are driven by the need to compete in the market, a product must be de-
veloped with respect to quality, cost, and time. It is important to make this product's
performance as close to the desired performance as possible. This work provides another
contribution and ideas for quality design.

1.5 STRATEGY FOR SOLUTION AND VALIDATION PHILOSOPHY

The strategy for solution involves the following:

Identifying control factors, noise factors/dispersed parameters, and fac-
tor levels in the case study.

-1 Identifying and applying the best suited orthogonal array.
Running various scenarios and calculating statistical quantities to dem-
onstrate the efficiency of orthogonal array based simulation.

[] Determining factor effects using ANOVA.
[] Applying techniques involved in quality engineering for a robust design

study and formulating and solving a compromise DSP to support the
designers of the LifeSat vehicle.

The preceding strategy for the LifeSat model (Chapter 3) is applied in detail in Chapters 4
and 5. The theory of this approach is explained in Chapter 2.

Our validation philosophy is based on one case study: the trajectory simulation of the
LifeSat space vehicle. We use this case study throughout the report to explain and
validate our approach and work. The complexity of this model is high, although, as
shown in Chapter 3, it is only based on a few equations. Model implementation is
validated by comparison of input and output with documented values. We further vali-
date the approach of using orthogonal arrays for simulation by

[] comparing Monte Carlo simulation and orthogonal array based simu-
lation results,

repeating the simulations with different factor levels and different
experiments with these factors, and

[] doing statistical calculations and tests to establish confidence.

Before we proceed to describe Taguchi's quality design using orthogonal arrays, we
describe the organization of this report in the next section.

1.6 ORGANIZATION OF THIS REPORT

Our work is focused on the simulation of the LifeSat trajectory and is heavily influenced
by quality engineering techniques developed by Dr. Genichi Taguchi. The contents of
each chapter is briefly described below,

In Chapter I, the motivation for this study is presented; namely, the problem of reducing
the number of simulations of the LifeSat trajectory. Stochastic uncertainty is described

Page 12

and two probability distributions are introduced. A brief description of Monte Carlo sim-
ulation is given. Our flame of reference--namely, quality design and the compromise
DSP--are introduced. We define our goals along with the tasks necessary for achieving

these goals and the main questions to be answered. Furthermore, the validation philoso-

phy is documented.

In Chapter 2, a review of quality design developed by Taguchi is presented. Factors are
classified and the signal-to-noise ratio is introduced. Simulation is identified as a method
to obtain information about system performance. A simple example is used to obtain an
understanding of several simulation techniques. The core of this chapter--namely, orth-

ogonal arrays--is introduced. The capabilities and properties of orthogonal arrays are
discussed. This discussion includes the statistical analysis of results by Analysis of

Variance (ANOVA).

In Chapter 3, the analysis model for the trajectory of the LifeSat space vehicle is devel-
oped. It is the main case study in this report. We discuss the presence of noise in the
model and describe the noise in terms of statistics. We identify a simplified model with

test cases and implement this model. Validation of the implemented model with trajec-

tory properties is then presented.

In Chapter 4, we present a comparison of results based on Monte Carlo simulation and
simulation using orthogonal arrays. With three different scenarios we establish the foun-
dations for the validation of model simulation based on orthogonal arrays. Techniques

introduced in Chapter 2 are applied to model quality into the design of the LifeSat vehi-
cle. In particular, we analyze the contributions of noise factors to the variation in system
performance and use the signal-to-noise ratio for a robust design study to identify the best
factor level settings.

In Chapter 5, we present the compromise DSP. A compromise DSP of the LifeSat mod-
el is developed, implemented, and solved. The signal-to-noise ratio is one of the goals to
be achieved while satisfying the system constraints. With a compromise DSP we obtain a

better design. Validation and observations based on the results are then documented.

In Chapter 6, we present a critical evaluation and conclusions of the presented work.
These includs the goals and achievements of this study. Limitations of this work are
identified, and suggestions for future work and closing remarks are given.

Efficient Experimentation for LifeSat Trajectory Simulation Page 13

' I Y':'-'-F_ _(_i _ _ :" .

Page 14

CI-IAI'TEI 2

ON QUALITY DESIGN AND SIMULATION REDUCTION

Quality is measured in terms of the total loss to society due to functional variation in
performance and harmful side effects. Quality is best achieved by minimizing the devia-

tion from the target. We quantify quality loss and determine the factors which influence

this loss. These factors, which cannot be controlled by a designer, are called noise factors
The fundamental principle of robust design is to improve the quality of a product by min-
imizing the effects of the causes of variation without eliminating those causes. Efficient
experimentation is necessary to find dependable information about design parameters.
The information should be obtained with minimum time and resources. Estimated effects

of parameters must be valid even when other parameters are changed. Employing the

signal-to-noise ratio to measure quality and orthogonal arrays to study many parameters
simultaneously are the keys to high quality and robust design.

Since variation in the product performance is similar to quality loss, analysis of variance
(ANOVA) will be the statistical method used to interpret experimental data and factor
effects. ANOVA is a statistically based decision tool for detecting differences in average

performance of groups of items tested [Ross, 1988; Roy, 1990].

We use Taguchi's quality technique to lay the foundation for simulation reduction. Three
techniques for the simulation of noise factors are introduced. Simulation based on orth-
ogonal arrays is the concept that will be investigated in this report.

__ PAGE BLANK NOT FILMED

On Quality Design and Simulation Reduction Page 15

2.1 QUALITY, QUALITY LOSS, AND ROBUST DESIGN

Phadke [Phadke, 1989], following Taguchi [Taguchi, 1987], measures the quality of a
product in terms of the total loss to society due to functional variation and harmful
side effects. Under ideal conditions, the loss would be zero; that is, the greater the loss,
the lower the quality. In the following sections, we discuss how we can quantify this loss
(Sec. 2.1.1), factors that influence this loss (Sec. 2.1.2), and how we can avoid quality
loss (Sec. 2.1.3).

2.1.1 The Quality Loss Function

How can we measure quality loss? Often quality is measured in terms of the fraction of
the total number of units that are defective. This is referred to as fraction defective.

However, this implies that all units which are within the tolerances of the requirements
are equally good (Fig. 2.1 (a)). In reality, a product that is exactly on target gives the best
performance. As the product's response deviates from the target its quality becomes pro-
gressively worse. Therefore, we should not be focusing on meeting the tolerances but on
meeting the target.

Taguchi defines the quality loss for not being on target by means of the quadratic quality
loss function [Taguchi, 1987; Phadke, 1989]:

L(y) = k (y - m) 2 , (2.1)

where

Y
m

k

is the quality characteristic of a product/process,
is the target value for y, and
is a constant called the quality loss coefficient.

The quality loss function is graphically shown in Figure 2.1. For maximum quality the
loss must be zero; that is, the greater the loss, the lower the quality.

In Figure 2.1, notice that at y = m the loss is zero and so is the slope of the loss function.

In the upper picture, the loss is zero within the range of m + A0. In the bottom picture,

the loss increases slowly near m but more rapidly farther from m. Qualitatively this is the
kind of behavior desired, and Equation (2.1) is the simplest mathematical equation ex-
hibiting this behavior [Phadke, 1989]. The constant k needs to be determined so that
Equation (2.1) best approximates the actual loss in the region of interest.

A convenient way to determine the constant k is to determine first the functional limits

for the value of y. Let m + A0 be the landing range for a space vehicle; e.g., the LifeSat.

Suppose the cost (loss) of losing or repairing the vehicle is A0 when the vehicle lands
outside the available area. By substitution into Equation (2.1), we obtain

Page 16

k= A° (2.2)
A2° "

With the substitution of Equation (2.2) into Equation (2.1) we are able to calculate the
quality loss for a given value of y. More on the determination of k can be found in

[Phadke, 1989].

L(y)

Ao

k Quality

Loss

m-% m m+%

(a) Step Function

Y

L(y)

I

Irl-_ m

t

Quality
Loss

t

rn+_ o

(b) Quadratic
Loss Function

r

y

Figure 2.1 - Quality Loss Function [Phadke, 1989]

2.1.2 Factors Affecting Quality

What are the factors influencing the quality of a product or process? In Figure 2.2, a
frequently used block diagram is given. It is called a P-diagram where the P stands for
either product or process.

x Noise

Factors

Signal

Factors I

Product / Process

I Control
z Factors

Y
v

Response

Figure 2.2 - Block Diagram of a Product/Process - P-Diagram [Phadke, 1989]

On Quality Design and Simulation Reduction Page 17

A number of parameters (also known as factors) influence the quality characteristic, y, of
a system. Three types are distinguished:

Signal Factors (M) - These are parameters set by the user or operator of
the product to express the intended value for the response of the product.
In other words, signal factors are the targets to be achieved.

Noise Factors (x) - Certain parameters cannot be controlled by a designer
and are called noise factors. Parameters whose settings (called levels) are
difficult or expensive to control are also considered noise factors. The
levels of noise factors change from process to process, from one envi-
ronment to another, and from time to time. Often only the statistical char-
acteristics (such as the mean and variance) of noise factors can be known
or specified and the actual values in specific situations cannot be known.
The noise factors cause the response y to deviate from the target specified
by the signal factor M and lead to quality loss.

21 Control Factors (z) - These are parameters that can be specified freely by
a designer. In fact it is a designer's responsibility to determine the best
values for these parameters. Each control value can take multiple values,
which are called levels. Phadke refers to control factors which affect man-

ufacturing cost as tolerance factors.

The LifeSat tasks can easily be stated in terms of quality and the factors used in the P-
diagram as follows:

The quality characteristic is the ability to follow the desired trajectory and

land at the desired target. The response of the system is the actual trajectory

including the deviation from the target. The noise factors are the environ-

mental and vehicle parameters. Control factors are specified by the designer;
hence, they are related to the vehicle like mass, velocity, dimensions, or

coefficients. In this case, no signal factors are applied.

In the following section, we answer the question of how to avoid quality loss. We intro-
duce the signal-to-noise ratio and the ideas of robust design.

2.1.3 Signal-to-Noise Ratio and Robust Design

How can we avoid quality loss? Taguchi has developed a signal-to-noise ratio (S/N) as a

predictor of quality loss after making certain simple adjustments to the system's function
[Taguchi, 1987; Phadke, 1989]. This ratio isolates the sensitivity of the system's function
to noise factors and converts a set of observations into a single number. It is used as the
objective function to be maximized in Robust Design [Phadke, 1989].

Three possible categories of quality characteristics exist. These are

21 smaller is better; e.g., minimum shrinkage in a cast iron cylinder

nominal is better; e.g., dimensions of a part with small variance
larger is better; e.g., achieve the highest efficiency

Page 18

We focus on the second type (nominal is better) because this category most accurately

represents the LifeSat. For a "nominal is better" problem the quality has to meet a certain

target, YO, and the a quality characteristic, 11, is defined by [Roy, 1990] as

1] = -10 loglo (MSD), (2.3)

where 1"1is expressed in decibels (dB) and MSD, the Mean Squared Deviation, is calcu-
lated from

MSD = ((YI - Y0) 2 + (Y2 - Y0) 2 + ... + (YN - Y0)2)/N. (2.4)

In Equation (2.4), Yi is the system response and N is the number of trials. There are other
formulations of the signal-to-noise ratio, which can be found in [Taguchi, 1987; Phadke,
1989; Ross, 1988].

The conversion to the signal-to-noise ratio can be viewed as a scale transformation for
convenience of better manipulation. It offers an objective way to look at two characteris-
tics; namely, variation and average (mean) value. Analysis using the signal-to-noise ratio
has two main advantages.

[] It provides a guidance to a selection of the optimum level based on least varia-
tion around the target and also on the average value closest to the target.

[] It offers objective comparison of two sets of experimental data with respect to
variation around the target and the deviation of the average from the target
value.

For the robust design of a product, two steps are required.

_, Maximize the signal-to-noise ratio 1"1. During this step, the levels of con-

trol factors to maximize rl are selected while ignoring the mean.

[] Adjust the mean on target. For this step, a control factor is used to bring

the mean on target without changing r l.

This is clarified in Figure 2.3, where we have given the target to be achieved and the
tolerances around the target. These tolerances define a probability distribution. The larg-
er the tolerances, the more products will satisfy these tolerances. Robust design is con-
cerned with aligning the peak of the bell-shaped quality distribution with the targeted
quality; that is, reducing the bias (Fig. 2.3). Furthermore, by increasing the signal-to-
noise ratio, the bell shape becomes thinner. This means that the variation in quality is
reduced and fewer products will be outside the tolerances set on the targeted quality. The
robustness of the quality is increased in this way. Maximization of the signal-to-noise
ratio and reduction of the bias form the core of robust design.

On Quality Design and Simulation Reduction Page 19

Probability
distribution

MSD = ((Y1- Y0) 2+ (Y2- Y0) 2+ '" + (YN" Y0)2)/N

_1= - 10 loglo (MSD)

Toler_ace

distribution

\

Y _t
bias

n standard deviations a

[_ f" Quality d istribufion

,
[Quality within

ations

Target Mean

Figure 2.3 - A Graphical Representation of Robust Design

In the LifeSat example, we are concerned with the shaded area in Figure 2.3 which repre-
sents the distribution of the landing position within the specified tolerances of the target.
For spaceflight applications, 99.73% of the area under the quality distribution must be
within the specifications. This is similar to using three standard deviations on both sides
of the mean (Sec. 1.2). Following the robust design approach, we want to decrease the
variation around the mean of the landing position and simultaneously minimize the bias
between this mean and the target.

Further information on quality loss and signal-to-noise ratios can be found in [Phadke,
1989; Taguchi, 1987; Ross, 1988; Roy, 1990]. Suh [Suh, 1990] discusses how to apply
statistical methods and Taguchi's approach in the selection of design parameters for sat-
isfying functional requirements. A maximization of the signal-to-noise ratio reduces the
information content of a design in keeping with Suh's second design axiom [Suh, 1990].

In his book, Phadke describes Robust Design as a method to improve the quality of a
product. The fundamental principle of Robust Design is to improve quality of a product
by minimizing the effect of the causes of variation without eliminating the causes. In
Robust Design, two important tasks need to be performed [Phadke, 1989].

Measurement of quality during design and development. We want a leading
indicator of quality by which we can evaluate the effect of changing a particu-
lar design parameter on the product's performance.

Efficient experimentation to find dependable information about design
parameters. It is critical to obtain dependable information about the design
parameters so that design changes during manufacturing and customer use can

Page 20

be avoided. Also, the information should be obtained with minimum time and
resources.

We have mentioned the specification of having 99.73% of all missions land within the
specified target range. How do we get the information about the deviation from the target
and the variations due to the noise factors? We have to perform experiments which pro-

vide the necessary results and information. In the LifeSat example, it is impossible to do
experiments with the actual system in the design phase. Therefore, a model has to be
developed for the trajectory from entry interface until landing. In the following section,
we give an overview about simulation involving noise factors based on traditional meth-
ods. In Section 2.3, we introduce orthogonal arrays--the core of Taguchi's experimental
design technique--and apply this technique in Section 2.4 for simulation based on orth-

ogonal arrays.

2.2 AN OVERVIEW ABOUT SIMULATION

In this section, we first define the necessary terminology used and discuss advantages and

disadvantages of simulation. Let us assume there are k noise factors denoted by xl, x2,
.... xk. These noise factors are specified by the mean and the standard deviation. How
can we evaluate the mean and the variance in the output response of our system? Three
common methods for these evaluations are

:a the Monte Carlo simulation,

the Taylor series expansion, and
a simulation based on orthogonal arrays.

We introduce the ideas of Monte Carlo simulation (Sec. 2.2.1) and Taylor series expan-

sion (Sec. 2.2.2) as two methods to simulate noise. An example is used to demonstrate
limitations of these techniques.

2.2.1 Terminology and Characteristics of Simulation

The following definitions are used:

Simulation - is defined as a technique used to derive solutions when analytical or numer-
ical solutions methods break down or are impractical to employ. It is used very often to

gain an understanding of a system, rather than to obtain a solution in the mathematical
sense [Donaghey, 1989].

A system - is a set of objects united by some form of interaction or interdependence that

performs a specified set of tasks. The system performs a function or process which re-
suits in an output due to some input [Donaghey, 1989].

A real system placed in its real environment usually represents a complex situation; e.g.,
space stations, ships, or airplanes. The scientist or the engineer who wishes to study a
real system must make many concessions to reality to perform some analysis on the sys-

tem. In practice, we never analyze a real system but only an abstraction of it. A model is

On Quality Design and Simulation Reduction Page 21

an abstract description of the real world giving an approximate representation of more
complex functions of physical systems [Papalambros and Wilde, 1988].

Deterministic models - are models that will give a unique set of outputs for a given set
of inputs.

Nondeterministic or stochastic models - are models in which relationships depend on
distributed parameters. Outputs for a given set of inputs can be predicted only in a prob-
abilistic context.

The model of a real system is simulated to study its behavior. Simulation has both advan-
tages and disadvantages. The advantages of simulation are as follows:

71 Most complex real world systems with stochastic elements cannot be
accurately described by a mathematical model, which can be evaluated
analytically. Thus, a simulation is often the only type of investigation
possible.

71 Simulation allows us to estimate the performance of an existing system
under some projected set of operating conditions.

rl Alternative proposed system designs can be compared via simulation to
see which design best meets a specified requirement.

71 In a simulation, we can maintain much better control over experimental
conditions than would be possible when experimenting with the system
itself.

71 Simulation allows us to study a system along a time frame.

The disadvantages of simulation are as follows:

71 Simulation models are often expensive and time consuming to develop.

71 On each run a stochastic simulation model produces only estimates of a
model's true characteristics for a particular set of input parameters. Thus,
several independent runs of the model will probably be required for each
set of independent input parameters to be studied.

71 The large Volume of numbers produced by a simulation study often creates

a tendency to place greater confidence in study results than is justified.

Dynamic systems are often analyzed by simulation since, as mentioned above, it may be
difficult to obtain the solution analytically. In the LifeSat model which will be developed
in Chapter 3, we are interested in the system response or output. One output is the land-
ing position. For the simulation we need to know the position, the velocity, and the

acceleration of the vehicle. But the position (x) is a function of the velocity (v), accelera-

tion (a), and time (t), and the velocity is again dependent on acceleration and time.
Acceleration is dependent on position and velocities. These relationships are shown in
Equation (2.5) as

x = fl (v, a, t),

v = f2(a, t), and (2.5)

Page 22

a = f3(x, v, t).

It is very difficult to obtain an analytical solution. Therefore, we numerically integrate
the acceleration and velocity beginning at the initial state. In the beginning of the LifeSat
simulation, we need an initial state that represents the position and the velocity. The
acceleration is then calculated from these values, and velocity and position are updated or

integrated using small time steps. This time step has to be adjusted to the dynamics of
the system. After each iteration we obtain an approximation of the real system.

There exist several numerical ways to do the integration of a function g(x). The simplest
one is the Euler technique [Bronstein and Semendjajew, 1987]. The slope of a function

y(x) is defined as

d__yy=y, =g(x) , (2.6)
dx

and the new function values are calculated as

Yl = Y0 +(Xl-x0)g(x0) = Y0 +Axg(x0),

Y2 = Yl + (x2 - xl)g(xl) = Yl + Axg(xl)

and

Yk = Yk-I + Axg(xk-l) • (2.7)

Other existing integration methods, like the Runge-Kutta [Bronstein and Semendjajew,
1987] method, are more accurate but require more information. We therefore first study
the differences in the output by employing different time steps for the Euler technique.
The larger the time step, the fewer the iterations we need for the simulation starting at the
initial state and stopping when a termination criterion is satisfied. The smaller the time
step, the higher the accuracy until numerical round-off errors influence the result. This
trade-off depends on the model behavior.

In this section, we have discussed advantages and disadvantages of simulation. We have

identified the necessity for simulation of the LifeSat model and have introduced the Euler
technique to be employed for numerical integration. To estimate the effects of noise
factors, a simulation is necessary to investigate the system. In the following section, we
introduce the Monte Carlo simulation and discuss some of its properties using a simple

example.

2.2.2 Introduction to Monte Carlo Simulation

In the Monte Carlo simulation, a random number generator, which is usually provided by

most computers, is used to simulate a large number of combinations of noise factors and

On Quality Design and Simulation Reduction Page 23

parameters with tolerances. These combinations are called testing conditions. The value
of the response is computed for each testing condition, and the mean and the variance of
the response are then calculated. For obtaining accurate estimates of mean and variance,
the Monte Carlo method requires evaluation of the response under a large number of test-
ing conditions. This is very expensive if the simulation requires a large amount of comp-
utational time and if we also want to compare many combinations of control factor levels.

This is a disadvantage (Sec. 2.2.1).

The following example provides some insight into the behavior of a Monte Carlo simula-
tion. We calculate the statistics of mean and standard deviation of a function F(x) in

order to have mathematical values for comparison. A function F(x) consists of the sum

of six squared variables Xl, x2 x6. For each of the six input variables, xi, we assume a

normal distribution with a mean of _ti = 0 and a standard deviation of (Yi = 1. This means,

most variable values will be placed near the mean value of zero. The function is given as

F(x) = Xl 2 + x2 2 + x3 2 + x4 2 + x5 2 + x6 2 . (2.8)

The function is useful to study the behavior for simulation when we do not have a nor-

mally distributed output. The reason for the choice of this function is the fact that we
have an analytical solution for the mean and the standard deviation. As documented in
[Sokal and Rohlf, 1981; Donaghey, 1989], this function has a chi-square distribution with

a mean of kt = 6, and a standard deviation of t_ = _/]2= 3.464. The function output is

skewed to the right, which means that there is a tail on the right side of the output distri-
bution. The distribution has no negative values and begins at zero. It is shown in Figure
2.6 later in this section. If all factors, xi, are set to their mean values, the function output

is zero and does not represent the analytical mean at all.

We have done six Monte Carlo simulations with 1000 function evaluations each. One

function output value is one sample; hence, we have a sample size of 1000 each. The six
random variables, xi, for one function evaluation are called error vectors. This error
vector is generated by the computer which follows a special sequence based on an initial
seed value. If we change this seed value, we obtain different random numbers in a run.

We are interested in the mean I.t and the standard deviation cr of the function output and

also in the convergence of these values to the analytical solutions. We expect a better es-
timation with increasing sample size.

In Figure 2.4, the mean value for the function F is plotted for six runs. We identify six
lines which represent the different runs. For each sample the new mean is calculated.
When the number of samples is below 100, there is large difference between the different
lines. If we do not consider the first few simulations, the lines vary between a mean

value of 5.2 and 7.3. In the range from 100 to 200 numbers of samples, the mean varies
between 5.7 and 7.0 for different lines. The changes for one line can be large within a

small difference of sample size. When the sample size further increases, the mean value
converges. After 1000 function evaluations, the mean values for different runs have not
exactly converged to the analytical mean value of six. The total difference between the
highest and the lowest mean estimation is nearly 0.5, which is approximately 10% of the
mean. We also observe the trend that a larger number of runs estimates a higher mean

Page 24

value. Five runs are above a value of six; one run has approached six. The different be-
havior of each line demonstrates the different choice of seed numbers for each run.

7.5

7

6.5

6

5.5
u,

4.5
I I I I I

0 200 400 600 800 1000 1200

Number of Samples

Figure 2.4 - Function Mean Value for Monte Carlo Simulation

The behavior of the standard deviation for the function is shown in Figure 2.5. As for the
mean, there is large variation for the standard deviation during the first 200 samples.
Also, the convergence for more samples is similar. After about 400 samples the changes
within each run are small, whereas the differences in two runs still can be large. At the
final sample size of 1000, the values for the standard deviation have approached its theo-
retical value of 3.464, but the differences for several runs remain.

I I I I I

0 200 400 600 800 1000 1200

Number of Samples

Figure 2.5 - Function Standard Deviation for Monte Carlo Simulation

On Quality Design and Simulation Reduction Page 25

In Figure 2.6, we present two histograms to show the frequency of function output values
for two different runs. The frequency represents the number of function values falling
into the interval 0-1, 1-2, 2-3, and so on. Because of the quadratic function, we have no

negative values but theoretically any positive value is possible. The total number of
frequencies equals 1000. Both pictures of Figure 2.6 have some differences, although the
overall shape is similar. In the left picture, we observe at least one function value greater
than 28; whereas, in the right picture, there is no value larger than 24. This again demon-
strates the differences in different sample populations and also shows the skewed distri-
bution of the function.

140

0
0 5 10 15 20 ?.5 30 35 40

Function Value

B

140

120

100

80

6O

4O

20

0
0 5 10 15 20 25

Function Value

30 35 40

Figure 2.6 - Histograms for Two Monte Carlo Simulations

From the observations made in the simulated function, F, we draw two important conclu-
sions about Monte Carlo simulation.

[] Small variations or convergence for statistics does not guarantee that the pop-
ulation mean and standard deviation are indeed approached.

Several independent runs result in different solutions. Therefore, a sample
size of 1000 may not be enough to get a "good" estimation (this of course is
dependent on the system or functional relations and on the number of factors
involved) of the statistics. Statistical estimates are usually combined with a
statistical confidence interval.

In the next section, we briefly explain a noise factor simulation method based on Taylor

series expansion.

2.2.3 Simulation Based on Taylor Series Expansion

According to Phadke [Phadke, 1989], in the Taylor series expansion method the mean
response is estimated by setting each noise factor equal to its nominal (mean) value. To
estimate the variance of the response, we need to find the derivative of the response with

respect to each noise factor. Let F denote the function and (Yl 2, (Y22, ..., (Yk2 denote the

variances of the k noise factors. The variance of F obtained by first-order Taylor series

expansion is then calculated by [Phadke, 1989]

: Page 26

(2.9)

The derivatives used in Equation (2.9) can be evaluated mathematically or numerically.

The equation, which is based on first-order Taylor series expansion, gives quite accurate
estimates of variance when the correlations among noise factors are negligible and the
tolerances are small so that interactions among the noise factors and the higher order
terms can be neglected. Otherwise higher order Taylor series expansions must be used,
which makes the equation for evaluating the variance of the response complicated and

computationally expensive. Thus, Equation (2.9) does not always give an accurate
estimate of variance. Another disadvantage is that we do not obtain an estimation for the
mean. In Section 2.2.3, we have seen that the mean of a function is not necessarily
obtained if the factors are set to their nominal values.

We want to use the same function, F, used in Equation (2.8) in Section 2.2.3 and to apply

the Taylor series expansion technique. We calculate all the derivatives as

_F
--_ = 2x i (2.10)
axi

Substituting x i with the mean value].ti = 0 and using (fi = 1, we obtain

k

=4_x_cr_=0.0 . (2.11)
i=l

The estimation of the variance does not give a satisfying value. For the function F at the
given means and variances for the noise factors, neither the mean nor the variance is
obtained. The reason for this is easy to understand when we recall the function again.
All factors are squared; hence, the function value for all factors at xi = 0.0 is a local mini-
mum for the function. All first-order derivatives are zero and, by using Equation (2.11), a
variance of zero is calculated. We agree that this example does not show qualities of this
noise factor simulation method, but identifying limitations is important to avoid mistakes.

This is one case where the method fails; however, we find examples where the method is

applied successfully. One examples is shown in Ullman [Ullman, 1992] for the design of
a tank to hold liquid. Not only is the Taylor series expansion used but the methods of
robust design are also applied in a deterministic way.

In the following section, we introduce orthogonal arrays and their properties. They pro-
vide the basis for simulation based on orthogonal arrays and, hence, a way to reduce the

large number of simulations as required for Monte Carlo simulation. We also overcome
problems identified for Taylor series expansion.

On Quality Design and Simulation Reduction Page 27

2.3 INTRODUCTION TO ORTHOGONAL ARRAYS

The technique of defining and investigating the possible conditions in an experiment
involving multiple factors is known as the design of experiments. The concept of exper-
imental design involving multiple factors was first introduced by Sir Ronald Fisher nearly

70 years ago. The technique is known as a factorial design of experiments. It is also
called a matrix experiment. In Section 2.3.1, we provide some background about factor-
ial design with factorial experiments. The concepts of orthogonal arrays are explained in
Section 2.3.2, and an algorithm to create three-level orthogonal arrays is developed in
Section 2.3.3.

2.3.1 Factor Experiments

If all possible combinations of the given set of factors are considered, we call it a full

factorial design. For example, in an experiment where five factors are involved---each
factor on three levels--the total number of combinations will be 35 = 243. A factor level

is the setting of this factor to a specific value. A full factorial design with two factors, A
and B, at two levels, 1 and 2, is shown in Table 2.1.

Table 2.1 - Full Factorial Experiment with Two Factors at Two Levels

.... Experiment
1
2
3
4

Factor and Factor Level
A B
1 1
1 2
2 1
2 2

We have four possible combinations (experiments) for two factors and two levels which
are

A1B1, A1B2, A2B1, and A2B2.

With three factors A, B, and C at two levels, we have eight (23) combinations; namely,

A1B1C1, AIB2CI, A2B1C1, A2B2C1,

A1B1C2, A1B2C2, A2B1C2, and A2B2C2.

The increase of possible combinations is exponential and, for engineering problems in-
volving many factors, the number of possible combinations is extremely large. The
question is, How can an engineer efficiently investigate these design factors? To reduce
the number of experiments to a practical level, a smaller set from all possibilities is
selected. The technique of selecting a limited number of experiments to produce the most
information is known as fractional factorial experiment or fractional factorial design. In

Page 28

Ross [Ross, 1988], some efficient test strategies for fractional factorial experiments are

presented.

Taguchi [Taguchi, 1987] has established Orthogonal Arrays (OAs) to describe a large
number of experimental situations. Orthogonal arrays have been investigated by many
other researchers; e.g., Kempthorne, Addelman, and Seiden [Kempthorne, 1979;
Addelman, 1962; Seiden, 1954]. Taguchi's approach complements three important areas.

First, Taguchi clearly defined a set of orthogonal arrays, each of which can be used for
many situations. Second, he has devised a standard method for analyzing the results.

Third, he has developed a graphical tool, called linear graphs, to represent interactions

between pairs of columns in an orthogonal array. Roy [Roy, 1990] says, "Taguchi's

approach of combining standard experimental design techniques and analysis methods

produces consistency and reproducibility rarely found in any other statistical method."

The real power of an OA is its ability to evaluate several factors with a minimum of tests/
trials or experiments. Much information is obtained from a few tests. In Table 2.2, the
number of all possible combinations for two- and three-level factors is compared to the
number of experiments in Taguchi' s orthogonal arrays.

Table 2.2 - Full Factorial Design Comparison with Taguchi Design

Factorial Design Taguchi Design

Factors Levels Number of Experiments/Trials
3 2 8 (23) 4
7 2 128 (27) 8
15 2 32,768 (215) 16
4 3 81 (34) 9
13 3 271,594,323 (313) 27

Orthogonal arrays are denoted by Lx, where x represents the number of trials. For exam-
ple, in the L8 array with a maximum number of seven factors at two levels, only eight of
the possible 128 combination are required. The number of columns and trials in an
orthogonal array depends on the degrees of freedom, as described in Section 2.5.1. The
properties of orthogonal arrays are explained in Section 2.3.2.

2.3.2 The Concept of Orthogonality in Orthogonal Arrays

Orthogonal arrays are special matrices used for matrix experiments or fractional factorial
designs. They allow the effects of several parameters to be determined efficiently.
Taguchi has introduced many standard orthogonal arrays for matrix experiments; e.g., L9.
This standard orthogonal array is shown below. For each of the four factors A, B, C, and
D of L9 there are three levels (1, 2, and 3) that are represented in the columns.

On Quality Design and Simulation Reduction Page 29

Table 2.3 - Standard Orthogonal Array L9

Experiment
1
2
3
4
5
6
7
8
9

A B C D
1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

Orthogonality is interpreted in the combinatorial sense. For any pair of columns, all

combinations of factor levels occur an equal number of times. This is called the balanc-

ing property [Phadke, 1989]. For instance in the orthogonal array L9 for each pair of
columns, there exist 3 x 3 = 9 possible combinations of factor levels. Any two columns
of L9 have nine combinatorial levels--namely, (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),
(3,2), and (3,3)--but each combination only appears once [Suh, 1991]. Six different
combinations of two columns can be formed (AB, AC, ..., CD) from the four columns (A,
B, C, and D), which all have the same balancing property.

Factor B

C3

Factor C A2 C 1A3
Factor A

Figure 2.7 - Balancing Property in Orthogonal Arrays

Page 30

The balancing property or orthogonality is demonstrated in an example where we have
three factors A, B, and C with three levels each. In this case, the factors are assigned to
Columns 1, 2, and 3 in the orthogonal array L9 since we have only three factors and one

column is therefore empty. Each dot in Figure 2.7 represents one combination of the nine
experiments; hence, we have nine dots. The total number of all combinations is 27.
When we observe the picture, we identify that every plane contains exactly three dots.
Because of the balancing property, we have the minimum number of combinations neces-
sary for three factors with three levels to obtain information about factor effects.

In the following, we summarize the main benefits by using orthogonal arrays:

:_ Conclusions derived from the experiments are valid over the entire experimen-
tal region spanned by the control factors and their settings.

There is a large saving of experimental effort and, therefore, a reduction of
computational time for simulations.

"1 Data analysis can be done easily.

:30rthogonal arrays and their experiments are designed deterministically, not
randomly.

Orthogonal arrays are usually selected from existing standard orthogonal arrays. For use
on a computer, it is convenient to create the orthogonal arrays when they are needed as
discussed below.

2.3.3 An Automated Way for Three-Level Orthogonal Array Creation

To implement orthogonal arrays on the computer, we have developed an algorithm to
create orthogonal arrays for three-level parameters. These are the arrays L9, L27, and L81
which are used for 4, 13, and 40 parameters, respectively. The basic information is
provided by Latin Squares which present the smallest orthogonal entities. When there is
a complete orthogonal system of (n-l) Latin Squares, each Latin Square of dimensions

n x n, denoted by L1, L2, ..., Ln-1, it is possible to construct an orthogonal array of size n r

(r = 2, 3) and number of columns (n r - 1)/n - 1. The number r represents the number of
trials. For more detail, see [Taguchi, 1987]. In constructing an orthogonal array for a
k-level system, Bose and Bush [Bose and Bush, 1952] have shown a method of using a
matrix whose elements are taken cyclically. Masuyama [Masuyama, 1957] has used the
theory of algebraic numbers for the first time in constructing orthogonal arrays. The
three mentioned arrays L9, L27, and L81 are basically built up from two Latin Squares of
dimension 3 x 3. L9 is created from the Latin-Squares, L27 from L9, and L81 from L27.

Latin Square 1
1 2 3
2 3 1
3 1 2

Latin Square 2
1 3 2
2 1 3
3 2 l

Figure 2.8 - Latin Squares for Three Levels

On Quality Design and Simulation Reduction Page 31

In Table 2.3, the orthogonal array L9 is divided into three blocks from which the higher
orthogonal array (L27) is created. Each block represents one first column, A, with the
same number. The three other columns B, C, and D contain: an equal value within one
row in Block 1, the values of Latin Square 1 (Fig. 2.8) in Block 2, and the values of Latin
Square 2 (Fig. 2.8) in Block 3.

,Exp.
1

2

3
_T

4

A B C D

1 1 1 1

1 2 2 2

t 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1

Block 1

Block 2

Block 3

Figure 2.9 - Orthogonal Array L9 Divided in Three Blocks

Generally, we take each column from the smaller array to create the new array with three
times more experiments than in the old array and three plus one times more columns.
When we create L27 from L9, the array size changes from 9 to 27 experiments and from 4
to 13 columns.

The rules for the creation of a new three-level orthogonal array are always the same and
are given in four steps. See Figure 2.10 where the rows of orthogonal array L9 are shown
in "bold" in columns B, E, H, and K of the third block, represented by experiments 19 to
27. These rows are also found in the fu'st two blocks (experiments 1 to 9 and 10 to 18) of
the same columns.

The four steps to create a new orthogonal array are given as follows:

Step 1

Starting at column 1 in the new array, we create three new blocks by assigning Level 1 to
the first third of rows (Block 1), Level 2 to the second third of rows (Block 2), and Level
3 to the last third (Block 3).

Step 2
In Block 1, Columns 2 to 4 are created by taking the first column of the old array (which
has the same length as one new block) and assigning the same level in one row to all
three columns. Columns 5 to 7 are then created by using the second column of the old
array. This continues until all columns in Block 1 are filled.

Step 3
In Block 2, Columns 2 to 4 are created by taking the first column of the old array and by
assigning a row of Latin Square 1 starting with the old value. This step is repeated until
all columns in Block 2 are filled.

Page 32

Step 4

Block 3 is created similarly to Block 2, but instead of Latin Square 1 we use Latin

Square 2.

The algorithm presented by the steps is implemented in a software subroutine as shown in

Appendix A. Depending on the given number of parameters, the subroutine selects the

suitable orthogonal array and assigns the factor values corresponding to the levels 1, 2,
and 3.

Exp. A B C D E F

1 1 1 1 1 1 1
2 1 1 1 1 2 2
3 1 1 1 1 3 3
4 1 2 2 2 1 1
5 1 2 2 2 2 2
6 1 2 2 2 3 3
7 1 3 3 3 1 1
8 1 3 3 3 2 2
9 1 3 3 3 3 3

10 2 1 2 3 1 2
11 2 1 2 3 2 3
12 2 I 2 3 3 1
13" 2 2 3 1 1 2
14 2 2 3 1 2 3
15 2 2 3 1 3 I
16 2 3 1 2 1 2
I7 2 3 1 2 2 3
18 2 3 1 2 3 1

19 3 1 3 2 1 3
20 3 1 3 2 2 1
21 3 1 3 2 3 2
22 3 2 1 3 1 3
23 3 2 1 3 2 1
24 3 2 1 3 3 2
25 3 3 2 1 1 3
26 3 3 2 1 2 1
27 3 3 2 1 3 2

G H I J K L M

1 1 1 1 i 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
1 2 2 2 3 3 3
2 3 3 3 1 1 1

3 1 1 1 2 2 2
1 3 3 3 2 2 2
2 1 1 1 3 3 3
3 2 2 2 1 1 1
3 1 2 3 1 2 3
1 2 3 1 2 3 1
2 3 1 2 3 1 2
3 2 3 1 3 1 2
1 3 I 2 1 2 3
2 1 2 3 2 3 1
3 3 1 2 2 3 1
I 1 2 3 3 1 2
2 2 3 1 1 2 3

2 1 3 2 1 3 2
3 2 1 3 2 1 3
1 3 2 1 3 2 1
2 2 1 3 3 2 1
3 3 2 1 1 3 2
1 1 3 2 2 1 3
2 3 2 1 2 1 3
3 1 3 2 3 2 1
1 2 1 3 1 3 2

Figure 2.10 - Orthogonal Array L27 with 13 Factors (A - M) on Three Levels

We have seen the orthogonal arrays L9 and L27 in this section. The LS1 and all other

standard orthogonal arrays can be found in [Taguchi, 1987; Phadke, 1989]. Having iden-

tified the properties of orthogonal arrays and implemented an algorithm to create them
(restricted to three-level OAs), we now have the background to introduce simulation that

is based on orthogonal arrays.

On Quality Design and Simulation Reduction Page 33

2.4 SIMULATION BASED ON ORTHOGONAL ARRAYS

In this section, we introduce the simulation based on orthogonal arrays. We follow the

suggestions of Taguchi and Phadke for the selection of factor levels. In Section 2.4.1, we
introduce the basic methods for performing simulations with orthogonal arrays, which is
demonstrated with an example in Section 2.4.2.

2.4.1 Simulation of Variation in Noise Factors Based on Orthogonal Arrays

Taguchi has proposed to sample the domain of noise factors using orthogonal arrays. If
we use two- or three-level noise variables, the following level values are suggested in
[Phadke, 1989]:

a For a normally distributed two-level variable xi, having the mean Iti and

the variance (Yi2, we choose the levels to be kti - t_i and kti + t_i.

-_ For a three-level variable, we choose the levels to be kti -1_.5¢_i, kti, and

[t i + 1_.5Gi, having also the mean I.ti and the variance Gi 2.

A selection of three levels rather than two levels for the noise factors gives a variance
estimate of higher accuracy. However, the use of two-level orthogonal arrays leads to a
smaller number of simulations and, hence, a time and cost savings. For space missions
we are most concerned about the accuracy and confidence; therefore, we chose at least
three levels for each noise variable. The choice of more levels is preferred since the num-
ber of orthogonal array simulations will still be very small compared to the number of
Monte Carlo simulations. As explained in Section 2.3.3, an algorithm was developed that
will create three-dimensional arrays with up to 40 variables (L81). There are not many
standard orthogonal arrays available in the literature which cover more than three levels
and a large number of variables. In the simulation of the LifeSat model, we have used the
three-level array L27 for up to 13 variables.

In the literature, we have not found suggestions for the factor levels for uniformly dis-

tributed variables with the mean kt and the tolerance A. We choose the three levels to be

la - A, la, and kt + A, respectively, since these are levels are often chosen in orthogonal

array experiments [Phadke, 1989; Suh, 1991].

Despite the suggested factor levels we should investigate and simulate the model with
other levels. With the selections of different factor levels we have the opportunity to
place points closer or further away from the mean. We can have a representation where

more samples fall into the 1 o-level or more fall into the 3or-level of the input factors.

Simulation with orthogonal arrays seems to be simple and is only dependent on the right
choice of factor levels. As an example of the principal technique, we can use the six-

dimensional function F(x) already examined in Section 2.2.2 to demonstrate simulation
with orthogonal arrays.

Page 34

2.4.2 An Example for Orthogonal Array Based Simulation

For the following example we want to recall the function F(x) of Section 2.2.2 that is
defined as

F(x) = x12 + x22 + x32 + x42 + x52 + x62

with a mean of zero and a standard deviation of one for each factor. We have six vari-

ables and decide to select three levels for each variable. Therefore, the orthogonal array
L27 is the smallest available array to be used for the simulation. Since this array has 13
columns (recall Section 2.3.2), we choose the last six columns to assign the variables for
these columns with the corresponding levels.

All variables are normally distributed; hence, as suggested in Section 2.4.1, the levels for

the variables are selected to be _ + _/l_a, l.t, and l.t - _(_. In Figure 2.11, we present

the results of 27 experiments for the function value and the function mean which is calcu-
lated after each experiment.

10

8

0 pill_

1 3 $ 9

ilil!, !lll
11 13 15 17 19 21 23 25 Z7

Number or Experiment

10-

-----o--- Function Mean I
9-

8-

?-

6-

S 1

5 10 15 2ll 25 30

Number of Experiments

Figure 2.11 - Function Values and Mean Using Orthogonal Arrays

According to the last six columns of orthogonal array L27, all factors are at level 1 in the
first experiment. The function value becomes nine. The second experiment results in a
function value of zero since all factors are at level 2, which means a value of zero for

each variable xi. The other results can be verified with the L27. Obviously, the output re-

mains the same at a value of six from the 10 th to the 27 th experiment. The reason for this

behavior can be found in the symmetry of the function and in the orthogonal array itself.
During the first nine experiments, there are only a few variations in the settings. From
experiment 10 to experiment 27 each level occurs exactly two times. Since all variables
have the same values at the same levels, changes in levels make no difference from one

experiment to another. Due to the quadratic function, the lower and the upper level will
have no different effect on the function value.

The mean curve for this simulation is the right picture in Figure 2.11 which remains at a
value of six from the ninth experiment on. Due to the balancing properties of orthogonal
arrays, the function mean is estimated exactly. This might be accidental and has to be
investigated with further simulations.

On Quality Design and Simulation Reduction Page 35

The behavior of the standard deviation is closely related to the function values. In the
first case, the first function evaluation gives the highest possible output value of nine (in
the first and third case) at the chosen settings, and the second experiment gives the lowest
one, which is zero, the standard deviation has its highest value after two experiments.
Each additional experiment then contributes to a decrease in the standard deviation. The
differences between the first and the third case, which presents the lower curve in Figure

2.12, is extremely small due to the choice of the quadratic function.

7

6

_3

1

0 ' •

0 5 10 15 20 25 30

Number of Experiments

Figure 2.12 - Standard Deviation for Orthogonal Arrays

From the results we can see that use of an orthogonal array to estimate the function mean

provides a good estimation even for this function with a skewed output. Due to the
combinations in the orthogonal array, the standard deviation is underestimated and far

away from the analytical one or the one calculated with a Monte Carlo simulation. It is
much better than the Taylor series expansion method.

Generally, the use of orthogonal arrays seems to be applicable to simulate variations of a

system output due to variations of the input parameters and other noise. The results are
encouraging but further studies are necessary to see

-_ if the results are system dependent, and

[] if we can identify the right settings of factor levels.

Analysis of variance is introduced in the following section. ANOVA provides a tool to
analyze the results obtained from the simulation and to determine factor contributions in
the variation of the output.

Page 36

2.5 INTRODUCTION TO ANALYSIS OF VARIANCE

In the preceding, a full factorial design was replaced by a less expensive and faster
method: the partial or fractional factorial design. Taguchi has developed orthogonal
arrays for his factorial design. Partial experiments are only a sample of the full experi-
ment. Hence, the analysis of the partial experiments not only has to include estimations
of the statistics but also an analysis about the confidence of these results.

Analysis of variance (ANOVA) is routinely used and provides a measurement for confi-
dence with respect to factor influences. We use it as the statistical method to interpret
experimental data. This technique rather determines the variability (variance) of the data
than analyzing the data itself. Some basic information about analysis of variance can be
found in many statistic books; e.g., in [-Dunn and Clark, 1987; Sokal and Rohlf, 1981;
Casella and Betget, 1990]. Analysis of variance using orthogonal arrays is explained in
greater detail in [Taguchi, 1987; Roy, 1990; Ross, 1988].

The analysis of the results based on experiments with orthogonal arrays is primarily to
answer the following three questions:

What is the optimum condition with respect to quality?
Which factors contribute to the results and by how much?
What will be the expected result at the optimum condition?

In our study, we are most concerned about the f'n'st two questions. When we deal with
noise factors we can calculate the contribution of the factors to the output response or

performance. Although ANOVA is basically developed to study control factors, we
apply the same technique on a lower level to study the effects and contribution of noise
factors to the variation of the output.

ANOVA is an analysis tool for the variance of controllable (signal) and uncontrollable
(noise) factors. By understanding the source and magnitude of variance, better operating
conditions can be predicted. But can we also predict worse conditions; e.g., the nominal
output is on target but the variance is higher compared to other settings? ANOVA is a
decision tool for detecting differences in the performance of a system.

2.5.1 ANOVA Notations

There are many quantities calculated in the analysis of variance, such as sum of squares,
degrees of freedom, or variance ratio. All of these quantities are organized in a standard
tabular format. We use the following notation:

SS = Sum of squares (factor, error, total),
SS' = Pure sum of squares,
f = Degrees of freedom,
V = Variance/mean squares,
F = Variance ratio,
T = Total sum (of results),
P = Percent contribution,
CF = Correction factor,

N = Number of experiments/trials.

On Quality Design and Simulation Reduction Page 37

2.5.2 ANOVA Terms, Equations, and Example

Sum of Squares
The sum of squares is a measure of the deviation from the mean value of the data. The
effects of factors and interactions can be estimated by summing the squares of the effects

at various levels and averaging over the number of degrees of freedom. The sum will be
the total variation. Thus, the total sum of squares is calculated from

N

SST =_(Yi -T) 2 ,
i=l

(2.12)

m

where T = T / N is the mean value of the total result T and N is the number of experi-

ments. This expression is mathematically equivalent to

N T 2 s

SST = _Yi2 N - _y_ -CF (2.13)
i=l i=l

Note that the expression T2/N is called the correction factor CF. It presents a correction
in the magnitude of the sum of squares of the mean.

When we perform experiments with orthogonal arrays, we have an equal number n of ex-

periments at each of the k levels (1, 2, ...k) for one factor. The sum of squares---e.g., for
factor A on levels Ai--is the sum of all level variations and can be calculated as

kA

SSa = __., "_z- CF , (2.14)
i=l nA

and since nA is constant, it becomes

= 2 A 2SSA a 2 + A_ +...+ k,, _ CF (2.15)

n A

In the same way, we calculate the sum of squares for each of the involved factors and use
the notation SSA, SSB, .., SSi for i factors A, B etc.

The error sum of squares can now be calculated as

Page 38

SS c=SS v-_SSi , (2.16)

which is the total sum of squares minus the sum of squares of all factors and interactions.
We use a simple example to clarify Equations (2.12 to 2.16). In Table 2.4, the orthogonal
array L8 is presented which has seven columns and eight experiments (trials).

Table 2.4 - Orthogonal Array L8

Column no.

Trial no. 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

From this array we use the first three columns to study the effects of factors A, B, and C.
In Table 2.5, these three columns along with results y are shown. Each factor has two

levels (k = 2), and the number of experiments at one level is four (ni = 4). The y data
values assigned to the last column are artificially chosen.

Table 2.5 - Two-Level Experiment Analysis with Three Factors

A B C

Column no.

Trial no. 1 2 3 y data
1 1 1 1 7
2 1 1 1 4
3 1 2 2 8
4 1 2 2 10
5 2 1 2 3
6 2 1 2 5
7 2 2 1 9
8 2 2 1 5

Using this table, we calculate the correction factor for the total sum of squares and the
factor sum of squares. The error sum of squares is calculated last. These calculations are
as follows:

On Quality Design and Simulation Reduction Page 39

512
CF = (7+4+8+10+3+5+9+5)2/8 - 8 - 325.125,

SST = 72 + 42 + 82 + 102 + 32 + 52 + 92 + 5 2 - 325.125 = 43.875,

(7+4+8+10) 2 +(3+5+9+5) 2
SS A =

4
= 331.25- 325.125 = 6.125,

325.125

(7+4+3+5) 2 +(8+10+9+5) 2
SS B =

4
= 346.25-325.125 = 21.125, and

-325.125

(7+4+9+5) 2 +(8+10+3+5) 2
SS c -

4
= 325.25- 325.125 = 0.125.

- 325.125

Using Equation(2.16), we obtain the value for theerrorvariation as

SS e = SST-SSA-SSB-SS C

= 43.875-6.125- 21.125- 0.125 = 16.5.

From the results we see that factor B has the highest influence on the variance of the out-
put. Factor C has almost no influence on the variation. Also, a large variation is assigned
to the error. Note that this example is not a typical textbook example since the error term
is large. We have used only three of seven possible columns of OA L8. If we use more
columns to study interactions between factors, the error term will decrease. At the mo-
ment we have neglected these interactions.

Degrees of Freedom
A degree of freedom (DOF) in a statistical sense is associated with each piece of infor-
mation that is estimated from the data. We are interested in independent comparisons
between factor levels. A three-level factor contributes two degrees of freedom because
we are interested in two comparisons. If we take one factor at any level A1, we want to
know the change in response compared to level A2 and A3. In general, the number of
degrees of freedom associated with a factor is equal to one less than the number of levels

for this factor. This concept of independent comparisons also applies to the degrees of
freedom associated with the error estimate. If we have five experiments or data points,
point 1 can be compared to point 2, point 2 to point 3, point 3 to point 4, and point 4 to
point 5. There are four independent comparisons in this data set. A comparison of points
1 and 3 is not independent since it depends on the comparison of points 1 to 2.

Page40

The total number of degrees of freedom of a result T is calculated as

fT = (total number of experiments) - 1. (2.17)

The OA L8 as shown in Table 2.3, for example, with three two-level columns has a total
of seven DOF or one for each column. When we assign only three factors to the columns

as in Table 2.4, the degree of freedom for the error is defined as

where

fe = fT- fA- fB- fc (2.18)
=7-1-1-1=4 ,

fA = number of levels of factor A - 1 = 1,
fB = number of levels of factor B - 1 = 1, and
fc = number of levels of factor C - 1 = 1.

Hence, for an orthogonal array with eight experiments we cannot have more than seven
columns or factors. With seven factors assigned, there is no DOF left to estimate the
error.

Variance

The variance of each factor is calculated as sum of squares of this factor divided by

degrees of freedom for this factor. For two factors A and B, we have

VA = SSA/fA (for factor A),
VB = SSB/fB (for factor B), and
Ve = SSe/fe (for error). (2.19)

Variance Ratio and Pure Sum of Squares
The variance ratio F is the variance of the factor divided by the error variance. It is also
called the F-test and was named by Sir Ronald Fisher who invented the ANOVA method.
This tool provides a decision at some confidence level if a factor contributes to the sum
of squares. This ratio is used to measure the significance of the investigated factor with
respect to the variance of all factors included in the error term. For factors A, B, and the
error, the F values are calculated as

FA = VANe,
FB = VBNe,and
Fe = Ve/Ve = 1. (2.20)

Statisticians have worked out the expected distribution of this statistic, which is called the
F-distribution. The F value obtained is then compared with the values from the F-tables
for a given or desired level of significance. If the computed F value is less than the value
determined from the F-tables at the selected level of significance, the factor does not con-
tribute to the sum of squares within the confidence level. These tables are available in
most handbooks of statistics; e.g., in [Roy, 1990; Ross, 1988]. A more detailed descrip-
tion can be found in [Sokal and Rohlf, 1981].

A simple example is used to illustrate the F value. If we substitute VA by SSA/fA and
assume fA to be four, we obtain

On Quality Design and Simulation Reduction Page 41

F A = SSA/4Ve.

If the effect of A is negligible, SSA should be about four times Ve. It also tells us that
there are about four error variances in SA. Therefore, the true effect of A, which is the
pure sum of squares SA', can be estimated from

SSA' = SSA-4Ve.

In general, the pure sum of squares is the sum minus the degrees of freedom times the
error variance. Factors A, B, and the error are calculated as

SSA' = SSA - fAVe,
SSB' = SSB - fBVe, and
SSe' = SSe + (fA + fB)Ve • (2.21)

Percent Contribution

If we want to know how much the variation SST is caused by the effect of one factor, we
divide the pure sum of squares by the total sum of squares SST. The factor P gives the
contribution in percent and is obtained by

PA = 100 SSA'/SST,
PB = 100 SSB'/SST, and
Pe = 100 SSe'/SS T . (2.22)

These quantities are organized in an ANOVA table. A typical table is presented in Table
2.6. The values are calculated from the example shown in Table 2.5, where the sum of
squares is explained.

Table 2.6 - Typical Analysis of Variance Table

Source f SS V F SS' P

A 1 6.125 6.125 1.485 2 4.56

B 1 21.125 21.125 5.121 17" 38.75
C 1 0.125 0.125 0.030*

Error 4 16.5 4.125 1

Total 7 43.875 43.875 100%

At least 97.5% confidence.

Only factor B contributes to the variance of the output with a confidence level of at least
97.5%. The variation due to factors A and C is small compared to the error. Their con-
fidence level is below 90% and is not listed. In Table 2.5, we see that each factor has a

DOF of one while the error has four DOF. Therefore, only for the error the variance
differs from the sum of squares. The calculated F value has significance only for factor B
as stated above. The error is too large compared to the contribution of factor C. Hence,
we do not calculate the SS'c.

Page 42

These equations and the accompanying notation provide basic information about analysis
of variance and how it is applied to orthogonal arrays. More information can be found in
the references mentioned.

2.6 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

In this chapter we have presented the following information and concepts:

:_ Quality characteristics of a product/process and how to measure quality
loss due to the effect of noise factors.

:_ Orthogonal arrays and orthogonal array based simulation as a technique to
get dependable information about factors with less effort, cost, and time.

:_ A statistical method to interpret experimental data and factor effects.

We have identified our approach. We next need a simulation model to apply the sug-
gested simulation technique. Given the background derived in this chapter, the answers
to the questions posed in Section 1.4 become clearer. Is simulation based on orthogonal
arrays an appropriate alternative to Monte Carlo simulation? The search for an answer to
this question involves many tasks with respect to quality, confidence, available informa-
tion, and design decisions. In the next chapter, we develop the analysis model for the

LifeSat vehicle in order to perform the necessary tasks using this model.

On Quality Design and Simulation Reduction Page 43

PAGE INt[.-rvi Iu_ALL'I

Page 44

CI-IAPTER 3

THE LIFESAT SPACE VEHICLE MODEL

Our main case study, as described in Section 1.1.1, is the trajectory simulation of the

LifeSat space vehicle. The vehicle is supposed to follow a predetermined trajectory de-
fined by the initial state at entry interface and to land within the desired target area. In
Section 2.1.2, we have described the classification of factors as signal, control, and noise
factors. Noise factors will cause a deviation from the trajectory and, hence, a deviation

form the target. In this chapter, the LifeSat model is derived in detail. The analysis
model is discussed in Section 3.1 including all mathematical relationships concerning

gravity, aerodynamic forces, atmosphere density, etc. In Section 3.2, we identify the
noise factors and their dispersions. We separate them into factors with uniform and nor-
mal distributions. The implemented model is validated in Section 3.3. Next this model

will be used in Chapter 4 to answer the questions posed in Section 1.4.

PR_t_II.D_ PAGE BI.ANK NOT FI(_t_-'D

The LifeSat Space Vehicle Model Page 45

3.1 THE ANALYSIS MODEL FOR THE LIFESAT SPACE VEHICLE

To simulate the trajectory of the LifeSat space vehicle, we need an analytical model that
describes the forces applied to the vehicle. We further have to model the atmospheric
density and also to determine the performance parameters used to evaluate the trajectory.
This is done in Sections 3.1.2 and 3.1.4. Information about the LifeSat model is obtained

from [Tigges, 1992]. In Section 3.1.1, the nomenclature used in the equations is given;
and in Section 3.1.3, we explain the coordinate systems used in our simulations.

3.1.1 Nomenclature

In the LifeSat model, the following nomenclature is used for variables, parameters, and
constants where vectors are shown "bold":

Aref
Cd

Cl

er

en

ed

el

FTOTAL

F G RA VITY

F AERO

g
h

110
hs
Ji

m

Me
M

r, R

R0
Vr

Vr

K

_t

P0

P

tp, O

0

b

reference area (m 2)

drag coefficient
lift coefficient

unit vector for relative velocity

unit vector for position
unit vector for drag
unit vector for lift

vector of total force applied to the vehicle (N)

vector of gravity force (N)

vector of aerodynamic forces (N)

acceleration of gravity (m/s 2)
height, altitude (m)
standard height (m)
reference height (m)
Performance parameter
vehicle mass (kg)
mass of the Earth (kg)
mole mass (kg/kJ)
distance or radius from coordinate origin (m)
Earth radius (m)
magnitude of relative velocity (m/s)

vector of relative velocity (m/s)

gravitational constant (m3/(kgs2))

product of the gravity constant _:, and the mass of the Earth Me (m3/s 2)

standard air density (kg/m 3)

air density (kg/m 3)

angles in polar coordinate system

rotation angle (rad)

angle of velocity (rad/s).

_ ___i"-¸

Page 46

3.1.2 A Model of Gravitational and Aerodynamic Forces

The LifeSat space vehicle is modeled by simple functional relationships.
the vehicle is only driven by forces not coming from the vehicle itself.
identified; namely,

The motion of
Two forces are

gravity, and
-_ aerodynamic force.

The applied force on the vehicle is a combination of the gravitational force and aerody-
namic force. In vector form, the equation for the total force is given by

where
FroraL = Fc_twrr + FAERO ,

#---e
Foe,AVnv __ -m R2 R

(3.1)

(3.2)

Gravity has the opposite direction from the radius vector, pointing from the coordinate
origin (coordinate systems are explained in Section 3.1.3) to the vehicle's center of mass.
The Cartesian coordinate system used is shown in Figure 3.1 (Sec. 3.1.3). In Equation

(3.2), we have Ix = gR02 = 3.98"1014 m3/s 2, the product of acceleration of gravity and

radius of the Earth squared. For our model we use values of

g = 9.81 rn]s 2, and
:3 R0 =6370km.

The constant Ix is also the product of gravitation constant 1<and the mass of the Earth Me;

namely, I.t = K:Me. The gravitational force decreases proportionally to the radius squared.

The aerodynamic force is the sum of drag forces and lift forces, both having different di-
rection vectors. The direction of the drag force is opposite to the velocity. In Equation

(3.3), the product 0.5pvr 2 is called the dynamic pressure and is a measure of pressure due

to velocity. The aerodynamic force is calculated from

1 2

F A_Ro : _pvrAr,y[caea + c/e,]
(3.3)

In Equation (3.3), ed and el are unit vectors for drag and rift and are defined as

Vr (3.4)
er =--ed :_r_ '

and

e t = e 1cos 0 + e 2 sin 0 (3.5)

The vehicle is stabilized through rotation. The vectors el and e2 are two orthogonal
vectors of the vehicle's coordinate system. The third orthogonal component is the

The LifeSat Space Vehicle Model Page 47

velocity vector er. In Equation (3.5), 0 is the rotation angle. The nominal rotation rate is

given in Equation (3.6) as

0 = 00 + OAt , (3.6)

where 00 is the initial value of the rotation angle and the angle of velocity, 0, for the

vehicle rotation is given by

O = --25° (3.7)
sec

In Equations (3.2) and (3.3), I.t is the product of natural constants. The parameters m, Cd,

Cl, and Aref are vehicle parameters. The relative velocity Vr and the radius R are calcu-

lated from state vectors Vr, eR for speed and position. To model the trajectory we need
coordinate systems which describe both the initial state and the state during the flight
simulation. This is explained in Section 3.1.3.

3.1.3 Coordinate Systems

The state vector of the vehicle is used to describe the position and velocity of the vehicle.
Since we are interested in the state relative to the Earth, we use coordinate systems with

origins fixed at the center of the Earth. For this purpos,e we use the Cartesian and the
polar coordinate systems. The coordinate systems are shown in Figure 3.1. The Cartesi-
an coordinate system is defined by the orthogonal components x, y, and z; the radius r

and the angles tp and O define the polar coordinate system. If the radius r is on the

Earth's surface, it is denoted by R0.

X

Z

:---y

Figure 3,1 - Cartesian and Polar Coordinate System

Page 48

Given a point at distance r from the origin, we measure the angle tp between the x-axis

and the projection of r into the x-y plane. The angle O is measured between the z-axis

and r. Additional information can be found in [Bronstein and Semendjajew, 1987].

The conversion of polar coordinates into Cartesian coordinates is given by the following
equations as

x = r costp sinO,

y = r sinqo sin®, and

z = r cosO. (3.8)

The conversion from Cartesian to polar coordinates is calculated from

r=_/x 2+y2+z 2 ,

tp = arctan (y/x), and

O arctan _f_ + y2 z= - arccos (3.9)
z _/x 2 + y2 + Z2

There are several options that will characterize the position and velocity state vector for
the trajectory of the entering vehicle. Some of these possibilities are listed in Table 3.1
where each group represents a different alternative with respect to position and velocity
[McCleary, 1991].

Table 3.1 - State Descriptions for Position and Velocity

POSITION

Longitude
Geodetic latitude

Altitude
Longitude

Declination
Radius magnitude

Longitude
Geocentric latitude

Altitude

x, y, z components

VELOCITY

Inertial velocity magnitude
Inertial flight path angle

Inertial azimuth

Relative velocity magnitude
Relative flight path angle

Relative azimuth

x, y, z components

The LifeSat Space Vehicle Model Page 49

The initial state is characterized by initial positions and initial velocity using one of the
options of Table 3.1. In tables obtained from NASA [McCleary, 1991], the entry inter-
face state or initial state is defined by

longitude (deg), geodetic latitude (deg), and altitude (m) for position, and
inertial velocity (m/s), inertial flight path angle (deg), and inertial azimuth
(deg) for velocity.

Therefore, we use the same descriptors for the initial state in our model. Calculations are
performed most easily in the Cartesian coordinate system; hence, we make a coordinate
system transformation. Note that there should be no confusion about the use of the words
inertial and initial. The inertial state for velocity is transformed into the initial state in

the fixed Cartesian coordinate system. Therefore we, prefer to use initial.

The value of longitude corresponds exactly with the value of (p in the polar coordinate

system. The geodetic latitude has a value of 0 deg at the equator of the Earth and 90 deg

at the North Pole. The value can be transformed into O using O = 90 deg minus geodetic

latitude. The altitude is the difference between the radius r and radius of the surface of

the Earth; hence, r = R0 plus altitude.

To make a transformation of the velocity state vector we first must explain the terminol-
ogy for flight path angle and azimuth. As can be seen in Figure 3.2, the flight path angle

is the angle 7 between the velocity vector and a parallel to the surface line.

e V

Figure 3.2 - Illustration of the Flight Path Angle y

The angle azimuth o_, which is depicted in Figure 3.3, is the angle which is measured

between the longitude and a projection of the velocity vector onto the surface plane or a

plane that is parallel to it.

Page 50

Figure 3.3 - Illustration of the Azimuth Angle

The magnitude of the relative velocity Vr can be transformed into components of the

velocity in the Cartesian coordinate system Vx, Vy, and Vz using angles 7 and o_ and the

angles tp and O of the polar coordinate system. In Equation (3.10), the relationships are
described as

vx : V r [COS q)(sin O sin y - cos O cos ycos a) + sin q_cos y sin a]

v r : Vr[Sin q_(sin Osin y- cosOcos rcos t_)- cos tpcos rsin a] , and

v_ = v r [sin O cos),cos a + cos O sin y] (3.10)

When we know the x, y, and z components for position and velocity, it is much simpler to
calculate the trajectory of the vehicle. At the end of the flight we are interested in the
position given in longitude and geodetic latitude. For this purpose, we re-transform the

position components back into these parameters.

Another parameter of Equation (3.2) has to be calculated; namely, the atmospheric
density. The model of this parameter is explained in Section 3.1.4, and performance pa-
rameters for the vehicle are introduced in Section 3.1.5.

3.1.4 The Atmosphere Model

The atmospheric density is one parameter which has not yet been described and modeled.
It is a necessary parameter for the calculation of the aerodynamic forces and largely de-
termines the trajectory of the entering vehicle.

Originally, the atmosphere model is generated by the Global Reference Atmosphere

Model (GRAM-88) to be used for the LifeSat model. This model is a function of time,
altitude, longitude, date, and solar activity. Planetary atmospheres can be assumed as a
first approximation to have exponential density-altitude distributions. The exponential
atmosphere, as shown in Equation (3.11), is a simplified approximation. The ratio of

actual density p to standard density P0 is

The LifeSat Space Vehicle Model Page 51

&=e -3Ah , (3.11)
Po

where 13 = -(1/p)(dp/dh) = Mg/RT0. The integration of this differential equation

then results in Equation (3.11). We use the following parameters and constants for the
calculation:

the mole mass M of air, which is approximately M = 29 kg/kmole,
the universal gas-constant defined as R = 8.314 Joule/(mole K), and
the reference temperature of TO = 293 K.

We calculate the standard density P0 from P0 = Mp0/(RT0) = 1.2 kg/m 3, where

P0 = 1.013 bar is the standard pressure. Using the previous g value, we obtain

= 0.0001168 m -1. If we denote hs = 1/[] = 8.563 km as the reference height and refor-

mulate Equation (3.11), we obtain Equation (3.12) as

-(h-h0)

p = poe hs (3.12)

This equation is based on the assumption that g is constant over the whole range from h0
to h. In fact this does not hold true. At a height of approximately 120 km above the
surface (altitude), which we use as the height of the entry interface of the vehicle, g is
about 3.5% smaller than the initial value at the surface. If we compare this to docu-
mented standard values in engineering handbooks (e.g., [Marks, 1986]), we have some
deviations in our calculated values which are caused by approximations. For example,

the standard density is documented as P0 = 1.225 kg/m 3 and 13as 0.0001396 m -I. These

differences will not affect our study since our aim is to show the working of a method and
not accuracy in modeling.

3.1.5 Performance Parameter

Along with path values, several so-called performance parameters can be calculated
which provide some information about the impacts on the vehicle. These parameters are

:a J1 = Peak (g - load/acceleration),

:a J2 = Peak (0.5pv2; dynamic pressure),

:_ J3 = Peak (heat-rate),

-1 J4 = A-Range - target, and

"_ J 5 = Mach @ chute deploy.

Of primary interest are forces and the dynamic pressure. Acceleration, rather than forces,
provides a value independent from the mass and is used as a measure of performance.
After the vehicle has entered the atmosphere, gravity accelerates the vehicle towards the
Earth. At the height of the entry interface at about 120 km altitude, the atmospheric dens-

ity is approximately 8.65 x 10 -7 kg/m 3 which is very low. The acceleration of gravity is

about 9.45 rn/s 2. The density increases along the trajectory with decreasing altitude of

Page52

the vehicle. The vehicle enters the atmosphere with an initial speed of nearly 10 km/s,

but increasing atmospheric density slows the speed. The acceleration is also called g-load
as a multiple of the acceleration of gravity. During the simulation of the model, the mag-
nitude of the g-load is calculated along the path and the maximum value is stored. The

maximum or peak g-load is denoted as performance parameter J l.

The dynamic pressure, performance parameter J2, is calculated using the product of

density and the speed squared as J2 = 0.5pVr 2- It is a measure of the pressure due to

velocity but is independent from the vehicle parameters. Again we calculate this parame-

ter along the trajectory and store the largest value, the peak dynamic pressure.
Obviously, there is a strong relationship between J1 and J2 since both are part of Equation

(3.2).

Performance parameter J3, the heat rate, is computed and as before the maximum value
can be stored. The heat rate is measured as the peak heating of the vehicle per square

meter per second.

The last two performance parameters, which are denoted by J4 and J5, are the Mach

number at drogue chute deploy and the A-range of the target area. The A-range repre-

sents the deviation from target position measured in the directions of geodetic latitude

and longitude.

All of these performance parameters indicate a designer's interest in the landing position
of the vehicle and also other impacts on the vehicle. In the design of the vehicle, these
factors have to be taken into account.

In the design of the vehicle, there are also tolerances on the dimensions and parameters of
the vehicle which have to be taken into account. Vehicle tolerances, such as tolerances

on the mass or the drag coefficient, cause a variation in performance and trajectory and,
hence, a loss in quality when the target is not achieved. These tolerances, also called
dispersions, are noise factors according to the notation of Section 2.1.2. The exact value
of each vehicle parameter is not in control of the designer. Besides vehicle tolerances/
dispersions there are environmental dispersions. Atmospheric conditions vary and also
the initial state of the vehicle varies within some tolerances. In Section 3.2, all of the

different dispersion affecting the performance and the trajectory of the vehicle are ex-
plained in detail.

3.2 DISTRIBUTIONS OF THE LIFESAT MODEL PARAMETERS

In Section 1.3, we have explained the distribution of many natural parameters which can
either be assumed to be uniformly distributed or normally distributed. In the following,

we also use the word dispersion similar to distribution since this is the terminology used

by NASA [McCleary, 1991]. The LifeSat vehicle model includes six dispersed vehicle
and environmental parameters. In general, each variable/parameter can be assumed to be
dispersed. All input parameters used in the model are assumed to be either normally or

uniformly distributed. These are the following parameters:

[] vehicle mass,

angle of attack,

The LifeSat Space Vehicle Model Page 53

initial state,

[] aerodynamic coefficients,
[] atmospheric density, and
:J winds.

The preceding six dispersed parameters basically represent groups of parameters. The
initial state, for example, is based on another six dispersed parameters: three for the ini-
tial position and three for the initial velocity.

Some of the parameters are dependent of the values of other parameters and have to be
dispersed with respect to these values. The vehicle mass contains only one parameter
whereas the aerodynamic coefficients imply coefficients for lift and drag, and for vehicle
and parachutes. Hence, the final number of dispersed parameters will be greater than six.

As described in Section 1.3, a dispersed parameter can be represented by its mean la and

the standard deviation _. For our purpose we use the 3t_ value because this is widely ac-

cepted to be the value for tolerances. It is common practice that this value is given in per-

cent of the mean value. If the mean value is kt = 0, we need the absolute magnitude of the

dispersion.

In Section 3.2.1, we explain the dispersion of uniformly distributed parameters; and in

Section 3.2.2, we explain the normally distributed parameters.

3.2.1 Uniformly Distributed Parameters

According to the convention of Section 1.3, the distribution of uniformly distributed

parameters is described by the mean kt and the tolerance A. The parameter can have

values between bt + A. The uniformly dispersed parameters in the model are

the vehicle mass,
[] winds, and

a the angle of attack.

VEHICLE MASS - is uniformly dispersed around its mean value. There is no correla-
tion or dependency with other parameters. Mean and tolerance are

A=

1560.357 kg = 3440 lb, and

78.018 kg = 172 lb, which is equivalent to 5%.

A higher mass than the mean value increases the gravity forces on the vehicle. Therefore,
we expect a shorter flight time and higher values for performance parameter J1, J2, and J3.

The landing position for the latitude will be closer to the initial value at entry interface.

WINDS - are assumed to be uniformly dispersed and have a major effect when para-
chutes are deployed. They cause a shift of the vehicle parallel to the surface in a mainly
east-west-direction or vice versa. In our simulation, we have neglected this factor and,
hence, are not concerned about the variations of wind speed and direction. In Section 3.3,

Page 54

we explain in more detail the choice of parameters for the simplified implemented model.
Mean and tolerance are not of interest. There are some consequences following this ex-
clusion which are explained in Section 3.3, too.

ANGLE OF ATTACK (x - is uniformly dispersed around its mean value. The angle is

assumed to be constant during the duration of the flight. Mean and tolerance are

la = 0 deg, and

A = 5 deg.

The aerodynamic vehicle coefficients Cd and Cl are dependent on this angle whereas all
other aerodynamic coefficients are independent of the angle. The coefficients Cd and Cl
are normally dispersed; they will be explained in the following section. In Table 3.2, all
related values between angle of attack and aerodynamic coefficients can be found. The
listed values are the mean values of the normally distributed aerodynamic coefficients.

Table 3.2 - Angle of Attack Related Aerodynamic Coefficients

AERODYNAMIC
COEFFICIENT

Vehicle Cd
Vehicle CI

Drogue Chute Cd
Main Chute Cd

ANGLE OF ATTACK _ (deg)

-5.0
0.67068'
-0.04204

0.55
0.8

0.0

0.66512
0.0
0.55
0.8

+5.0
0.67068
0.04204

0.55
0.8

If we assume a linear relationship between mean values of the aerodynamic vehicle co-

efficients Cd and Cl and the angle of attack (z, we model them as

Cd = 10.66512 +0.001112 _1 (3.13)

and

c]= 0.008408 _ . (3.14)

The angle of attack is uniformly dispersed, and the calculated aerodynamic coefficients of
the vehicle at any value are the mean values for their normal distribution. In Figure 3.4,
we can see three curves for the normally dispersed drag coefficients for angle of attack

values of 0c = -5, 0, and 5 deg.

The LifeSat Space Vehicle Model Page 55

0.74

L)

0.72

0,7

0.68

0.66

0.64

0.62

0.6

-6 -4 -2 0 2 4 6 8

Angle of Attack (deg)

Figure 3.4 - Relation of Angle of Attack and Drag Coefficient

The distributions are probability density curves, and the height does not correspond to a
value of the angle of attack. As the mean values of the aerodynamic coefficients vary, the
value for their standard deviation also varies according to the mean. In Section 3.2.2, the

3_ value is defined as 5% of the mean value.

3.2.2 Normally Distributed Parameters

The distribution of normally distributed parameters is described by the mean kt and the

standard deviation _. The parameter can have any value, but the probability decreases

further away from the mean. As shown in Section 1.3, 99.73% of the area under the

probability density curve is within a range of kt + 3t_.

The normally dispersed parameters in the model are

the aerodynamic coefficients and reference areas,
[] the atmosphere, and
[] the six components of the initial state vector.

AERODYNAMIC COEFFICIENTS - The c d values are normally dispersed. In Sec-

tion 3.2.1, we have seen that they are related to the angle of attack and are not indepen-
dent. For the vehicle and the parachutes we have different values for Cd. In the model,

only drag coefficients are dispersed.

Page 56

The vehicle's reference area is not dispersed, but the reference area for the parachutes is

dispersed with 1% around the mean value. The values for the mean and 3t_ for drag

coefficients reference areas (shown below) are separated for vehicle and parachutes.

The vehicle drag coefficient is dispersed by

It = Cd as evaluated for a given angle of attack, and

3a = 5% of the mean It.

The parachute parameter are dispersed as follows:

The drogue chute drag coefficient is dispersed by

It = 0.8, and

3t_ = 0.04 (equals 5% of the mean It).

The drogue chute reference area is dispersed by

ItA = 51.24 m2, and

3CA = 0.512 m 2 (equals 1% of the mean It).

The main chute drag coefficient is dispersed by

It = 0.55, and

3a = 0.0275 (equals 5% of the mean It).

The main chute reference area is dispersed by

ItA = 4.1 m2, and

3_A= 0.041 m 2 (equals 1% of the mean It).

In Table 3.3, the values for vehicle and chute dispersions of the drag coefficient and the
reference area are summarized.

Table 3.3 - Vehicle and Chute Dispersions for Aerodynamic Coefficients and
Reference Area

DISPERSION

Vehicle
Drogue Chute

Main Chute

DISPERSION MAGNITUDE

Cd(3_)

Cd (5%)
0.0275 (5%)

0.04 (5%)

Ref. Area (3c, m 2)

0.041 (1%)
0.512 (1%)

In Equation (3.3) of Section 3.1.2, we use only one value for the reference area and the
drag coefficient. Therefore, we finally normalize the drag coefficients to obtain a single
value. According to the different stages during the flight (no chutes, drogue chute, main
chute) as described in Section 1.1.1, the coefficients for vehicle and parachutes are
normalized to be

The LifeSat Space Vehicle Model Page 57

cd= cdlAI +cd2A2+"'+CdnA" , (3.16)
A, + A2+...A,,

where n is the number of drag coefficients and Ai is the reference areas.

ATMOSPHERE - is normally dispersed and characterized by the density P0. Original-

ly, the dispersed atmosphere is generated by the Global Reference Atmosphere Model
(GRAM-88). This is a function of time, altitude, longitude, date, and solar activity. The
exponential atmosphere, as shown in Equation (3.12), is an extremely simplified approx-
imation. A table of pressure, density, or temperature at a given altitude can be found in
Baumeister [Baumeister, 1986] which gives more accurate values. Due to this approxi-

mation, we assume 30% (equals 3G) variation in the atmospheric density. The dispersion

is approximated by a normal dispersion and the mean value is the standard density P0 at

surface. At a given altitude, the mean is the value calculated at this height which uses

Equation (3.12) and standard density P0. In Section 3.1.4, we have calculated the stand-

ard density to be P0 = 1.2 kg/m 3. This value is used for the simulation.

We disperse the atmospheric density at surface by

IX = 1.2kg/m 3, and

3G = 0.36 kg/m 3, which is equivalent to 30%.

The density at a given altitude h is dispersed by

-(h - ho)

Ix = po e hs and

-(h - h0)

3cr = 0.3p0e hs

During the flight, the dispersion of the density does not change; only the new magnitude
is calculated for each iteration in the simulation. The use of the GRAM-88 model for the

simulation is much more complicated and is briefly explained below using NASA termi-
nology. The dispersed atmospheric density is computed as

P'2 = AP2p' + Bq, , (3.15)
Pl

where

--y

A = --(3r2eL-

o"1
1

Page 58

P'1 = dispersed density at previous location,

P'2 = dispersed density at current location,

p_ = mean density at previous location,

p_ = mean density at current location,

Ol = standard deviation about mean at previous location,

02 = standard deviation about mean at current location,

ql = normally distributed random number,
r = distance traveled from previous location, and
L = correlation scale length.

Basically, the calculation starts at the initial density value and the dispersed density is
updated at each location/position. By using statistical information from the previous and
the current location, the new value of the dispersed density can be calculated. This pro-

cedure is obviously very complicated and requires much more knowledge than does the
exponential density model. Therefore, we have chosen Equation (3.12) to model the at-
mospheric density. Since the density is one of the largest contributors to performance
variations, the large variation of 30% is justified to represent the "real" situation.

The STATE of the vehicle is described by three parameters for the position and by three

parameters for the velocity. We also need a total of six parameters to identify the initial
state. The various possibilities for the description of the state are shown in Section 3.1.3.
Originally, the dispersion of these six parameters is given in a covariance matrix which
includes correlation of each parameter with every other parameter. A transformation
of the coordinate system used in this matrix to the systems described in Section 3.1.3

is necessary. We simplify these dispersions by assuming no correlation among the
parameters.

The Initial Position - is defined by the parameters longitude (deg), geodetic latitude
(deg), and altitude (m). There are two possibilities to establish dispersion in the three
parameters. First, we transform the parameters just mentioned into the x, y, z coordinate
system and then disperse each component either by an absolute value or by using a per-

centage of the mean value for 3o. Second, we disperse each of the initial parameters in

the same way as before and then make the coordinate transformation. The first method
has the advantage of being able to determine the exact dispersions in the Cartesian co-
ordinate system. The second method seems to be better to study the effect of variations
in the initial position since it is related to angles instead of distances. We have used both
methods in our study and also have used different mean values for the initial position.
For the first method, we used the following dispersions of the x, y, z components:

ktx = Xinitial _ty = Yinitial [-tz = Zinitial

3Ox = 15000 m 3Oy = 15000 m 3Oz = 15000 m.

In this case, the dispersions are quite large (Sec. 4.1). As will be shown in Section 4.1,
this method is used for initial studies of the model. In a second case, as used in Section

4.2, we define smaller values to be

].tx = Xinitial [.ty = yinitial ktz = Zinitial

3Ox = 6000 m 3Oy = 6000 m 3Oz = 6000 m.

The LifeSat Space Vehicle Model Page 59

In the last case, we use the second method and hold the value for the altitude constant.

This is discussed in Section 4.3. The 3_ variation of the longitude and the geodetic lati-

tude are assumed to be absolute values and their initial values are set to obtain a target
value near -106.65 deg longitude and 33.6 deg geodetic latitude. Dispersions and their
magnitudes are shown in Table 3.4.

Table 3.4 - Initial State Dispersions for Position

DISPERSION

Altitude
Longitude

Geo. Latitude

DISPERSION MAGNITUDE

6491920 m
-106.65 deg

44.3 deg

313

0.01 deg
0.1 deg

The Initial Velocity - can be dispersed in the same way as the initial position. We either
disperse the x, y, z components of the initial velocity or disperse the magnitude of the
initial velocity and the inertial angles of flight path angle and azimuth. Using the first
method we define

_tx = Vxinitial _ty = Vyinitial l-tz = Vzinitial

3t_x = 2% of mean 3_y = 2% of mean 3ffz = 2% of mean.

In the second method, we keep a 2% dispersion for the magnitude of velocity and also
disperse the angles by absolute values as shown in Table 3.5

Table 3.5 - Initial State Dispersions for Velocity

DISPERSION

Velocity
Flight Path Angle

Azimuth

DISPERSION MAGNITUDE

9946.5 m_
-5.88 deg
180.0 deg

313

199.0 m_ (2%)
0.1 deg
0.1 deg

In the preceding sections, we explained the analysis model of the LifeSat vehicle in
Section 3.1 and the parameter distributions in Section 3.2. For the implementation, we
simplify the model based on some assumptions. In Section 3.3, we describe its imple-
mentation and validation.

3.3 MODEL IMPLEMENTATION AND VALIDATION

In this section, we explain the assumptions and simplifications used in the implemented
LifeSat model. We select the most important parameters for dispersions and validate the
implementation of the model by running a simulation and observing its behavior.

Page 60

3.3.1 Implementation of a Simplified LifeSat Model

Our implementation of the model is driven by a trade-off between completeness and suf-
ficiency. To simplify the model, we make the following assumptions:

Winds only have an influence when parachutes are deployed in the last
section of the flight. They cause a bias of the landing position in wind
direction. The effect (bias in landing position) of winds is dominant
but is neglected in the simplified model.

Aerodynamic forces due to the lift coefficient, Cl, equal out during the
flight because of constant rotation. Any variation in the landing posi-
tion caused by this factor is very small.

Coriolis forces, which are fictitious forces due to rotation of the Earth,

are not applied. They cause a bias in longitude and have a small effect
based on dispersed parameters.

Based on these assumptions, we determine the dispersed parameters for the study. A set
of contributions of error sources/factors to the output dispersion of longitude and geodetic
latitude is given in [McCleary, 1991]. We select the following nine dispersed parameters
from this set in the order of highest contributions:

atmospheric density,
vehicle drag coefficient,
initial state, and

-_ vehicle mass.

The order is based on the data provided in [McCleary, 1991]. As explained in Section
3.2, the initial state includes six dispersed parameters. To simplify the model, we neglect
the influence of winds and, hence, we neglect all parameters involved for the parachutes.
The lift coefficient is also neglected. Using the nine parameters, the model is sufficiently
accurate to show the application of the quality methods as introduced in Chapter 2. The
model with nine dispersed parameters is implemented for simulation.

To assure a proper implementation we validate the model by performing a simulation
based on the mean values of all parameters. The validation is done in Section 3.3.2.

3.3.2 Validation of Model Implementation

To validate the simulation we use initial state values which are chosen to be close to

those documented by NASA. We expect the flight-time to be in the range of 280 to 330
seconds. We also expect the landing position for the latitude near 33.6 deg [McCleary,
1991]. The complete initial state values are shown in Table 3.6. When a flight simula-
tion is done using only the mean values of each dispersed parameter we will call it the
nominal flight. In Chapter 4 a nominal flight is always simulated before parameters are

dispersed.

The LifeSat Space Vehicle Model Page 61

Table 3.6 - Initial State for Nominal Flight Simulation

Longitude
Geodetic Latitude

Altitude
Initial Velocity

Initial Flight Path Angle
Initial Azimuth

-106.65 deg
44.3 deg

121.92 km
9946.5 rn/s
-5.88 deg
180 deg

After the simulation is finished, we obtain data about the landing position, the final veloc-
ity, and flight parameters. Of course, the final altitude is zero. The longitude remains at
its initial value because we have neglected winds and Coriolis force. The final parameter
values for our simulation model are shown in Table 3.7.

Table 3.7 - Flight Parameters and Final State for Nominal Flight Simulation

Longitude
Geodetic Latitude

Altitude
Velocity

Flight-Time
J1
J2

-106.65 deg
33.71 deg

0.0 km
112.8 m/s
302 sec

130.57 m/s 2
92995.6 kg/(ms 2)

The flight-time is within the given range and the geodetic latitude is close to the target.
For performance parameter J1, we calculate the corresponding g-load as
J1/g = 130.57/9.81 = 13.3. This value also fits with the documented ones, which lie
between 11 and 15. Values for performance parameter J2 are not documented and can

not be compared now. But we get a f'u'st estimate of its magnitude.

We obtain some information about the flight trajectory from the following figures. In
Figure 3.5, the altitude versus geodetic latitude is shown. We identify a nearly linear
decrease in altitude with geodetic latitude until a value of about 40 km. Then the vehicle
nearly drops down compared to the distance already flown since entry interface.

140

120

100

60-

"< 40-

20-

0

46 44 42 40 38 36 34

Geo. Latitude (deg)

32

Figure 3.5 - Geodetic Latitude vs. Altitude

Page62

The increase in density seems to have a very high influence because all other parameters
except gravity do not change during the flight. Since we have a major change in the tra-
jectory at the "end" of the flight simulation, we are interested in when these changes
occur. In Figure 3.6, the altitude and latitude are shown versus flight-time. The whole
flight lasts about 300 sec; and although the altitude decreases gradually with each second,
the geodetic latitude has almost reached its final state before half the time has passed.

140 50

120 -

100-

80

60

40

20

0

0

Geo. Latitude (deg)

---.-- Altitude (km)

50 250 300100 150 200

Flight-Time (sec)

34

30
350

46

42 _

38 "4

d

Figure 3.6 - Flight-Time vs. Altitude and Latitude

1.000 104

8OO0

2000

0

0 350
I I t ' I I I

50 100 150 200 250 300

Flight-Time

Figure 3.7 - Flight-Time vs. Velocity

Finally, in Figure 3.7 the velocity during the flight is depicted versus the flight-time. The
main drop in velocity starts after about 70 sec. The velocity further decreases until grav-

The LifeSat Space Vehicle Model Page 63

ity and aerodynamic forces reach an equilibrium and, hence, it remains approximately
constant at about 110 m/s, which is also the impact velocity on the surface. Of course

this is a high value, but we also see that use of parachutes during the last 10 to 20 km alti-
tude will have only a small influence on the landing position if we do not assume winds.

The output values for this nominal flight simulation make us confident that the model has
been implemented properly. Small deviations from the documented values are caused by
the model simplification.

3.4 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

Now we have established the analytical model of the LifeSat vehicle and implemented it

by choosing nine important dispersed parameters under some assumptions and simplifi-
cations. This model will be used in Chapter 4 to answer the questions posed at the end of

Chapter 1 to satisfy our report goals. Simulation with orthogonal arrays is used to simu-
late the noise factors and quality techniques are applied to find a better design. In sum-

mary, we want to find answers to the following questions:

Is the use of orthogonal arrays for simulation an alternative to Monte
Carlo simulation?

a If it is, can we establish the same confidence level with a reduced
number of simulations?

[] Is the signal-to-noise ratio a measurement for quality and confidence?

[] Using ANOVA, are we able to estimate the factor influences on output
variations?

In Chapter 4, we perform simulations with the developed and implemented model for the
LifeSat vehicle. We also try to find limitations and identify further investigations neces-
sary to apply orthogonal arrays for simulations.

Page64

CHAPTER 4

OR THOGONAL A RRA Y BA SED SIMULATION

OF THE LIFESAT MODEL

In this chapter, we will discuss simulations of the LifeSat model that were developed in
Chapter 3. Results of Monte Carlo simulations provide the baseline for our comparison
of simulations with orthogonal arrays. A template, in which all required information for
the simulation is presented, is formulated in Section 4.1.1. For each dispersed parameter,
the mean and the standard deviation are given. The model is mainly examined by using
orthogonal array based simulations as explained in Chapter 2. By using the statistics of
the output, we are able to compare the different methods and to prove the accuracy of the
use of orthogonal arrays. In the first study, we investigate model behavior and compare
statistics. In the second study, we focus on the choice of different levels for the dispersed

input parameters.

In the last section of this chapter, we focus on statistical confidence and robust design.
We apply the analysis of variance technique to identify the most influential parameters on
the variation of the output. The employment of the signal-to-noise ratio to improve the

quality is demonstrated.

Orthogonal Array Based Simulation of the LifeSat Model Page 65

4.1 INITIAL LIFESAT MODEL SIMULATION

In this section, we first study the model behavior and make comparisons between Monte
Carlo simulations and orthogonal array simulations. For each of the two methods we per-
form two simulation studies and compare the statistical values of mean and standard
deviation for several system outputs. From the results we obtain a first estimation of the
feasibility of the orthogonal array approach. We also obtain information about the sav-
ings of computational time. As the output of interest, the longitude and geodetic latitude
are selected as representatives of the landing position (representing performance param-
eter J5) and the maximum acceleration and the maximum dynamic pressure as perform-

ance parameters J1 and J2. A footprint is a scatter diagram of longitude and geodetic
latitude which is used to show the landing position.

4.1.1 Template Development for Orthogonal Array

In Section 2.4, a simulation technique based on orthogonal arrays is presented. Especial-
ly the three-level orthogonal array is used and will be used further throughout this entire
study. In Chapter 3, we discuss the LifeSat model and the vehicle and environmental pa-
rameter dispersions. From the given parameter dispersions in Section 3.2 we identify an
orthogonal array and the levels for each factor. First, however, we want to recall the dis-
persed parameters for the implemented LifeSat model. These are

:_ initial state,

atmospheric density,
[] vehicle mass,
:J angle of attack, and
:_ vehicle drag coefficient.

The initial state is described by three parameters for position and three parameters for
velocity. Therefore, we have a total of ten dispersed parameters. We have seen the rela-
tion between the angle of attack and the vehicle drag coefficient in Section 3.2. If we
refer to Figure 3.4 in Section 3.2.1, we see that the changes in the angle of attack (less
than 1%) are small compared to the dispersion of the drag coefficient, Cd. For the use of
orthogonal arrays we had to define nine levels for the drag coefficient: three for angle of

attack tx = -5 deg, three for tx = 0 deg, and three for t_ = 5 deg. Since we want to use only

three levels for each parameter, we calculate the arithmetic mean of the Cd for the angle of

attack between 0t = 0 deg and tx = 5 deg. Therefore, the average drag coefficient is calcu-
lated from

Cd = Cd(a= 0)+Cd(a= 5) _ 0.665+0.671
2 2

= 0.668 . (4.1)

This is the mean value for the drag coefficient we have used. Three levels are selected
with respect to this value. This means that the final model for the use of orthogonal ar-
rays has nine dispersed parameters each on three levels. The orthogonal array which fits
this model is L27 with 27 experiments and 13 columns. We leave the first four columns
empty and assign the dispersed parameters to the remaining nine columns.

Page 66

Before doing this, the initial state is defined and coordinates are transformed. The initial

state data are the necessary input for the simulation, and we choose settings for the ve-

locity, geodetic latitude, and flight path angle to have the same magnitudes as shown in

[McCleary, 1991]. When all parameters are set to their mean values, the landing position

of this flight simulation is assumed to be close to the mean of all simulations when the

parameters are dispersed. To obtain the mean values, we first determine the data for the

initial velocity vector. Then the landing position for geodetic latitude is varied by modi-

fying the initial latitude value. Longitude, altitude, and azimuth are the same as in the

validation experiment in Section 3.3.2. In Table 4.1, all of the initial state parameter

values are presented. The mean values for the longitude, altitude, and inertial azimuth are

not varied throughout the several scenarios.

Table 4.1 - Initial State Data

Initial Velocit 7

Longitude

Geodetic Latitude

Altitude

Inertial Flisht Path An[lle

Inertial Azimuth

9000 _s

- 106.65 det_

43.0 de_

121920 m

-5.8deg

180.0 deg

With a coordinate transformation to the Cartesian system, we obtain initial state parame-

ters for position and velocity which are then dispersed as shown in Section 3.2.2. Please
refer to Figure 2.10 in Section 2.3.3 where the OA L27 is shown. In the same order of the

parameters in Table 4.2 we assign the x, y, z coordinates of position to the columns (5 to

7) with factors E, F, and G, respectively.

Table 4.2 - Parameter Statistics

Parameter

Position: x

Position: y
Position: z

Vehicle Mass

Atm. Density

Drag Coefficient
Speed: x
Speed: y
Speed: z

Mean i_
- 1360.4 km
-4548.8 km
4427.5 km

1560.4 kg

1.2 kg/m 3
0.668

-1559.1 m/s
-5213.2 m/s
-7168.8 m/s

Std. Deviation G

5000 m
5000 m
5000 rn
1.667%

10%

1.667%
0.667%
0.667%
0.667%

Orthogonal Array Based Simulation of the LifeSat Model Page 67

The vehicle mass is assigned to column 8 with factor H in the same way the remaining

parameters are assigned to columns 9 to 13. This choice is arbitrary and parameters can
be assigned in other ways to the columns. For the orthogonal array experiments, the

levels for all normally distributed parameters are chosen to be _i-_ t_i, kti, and

_i + _ _i, as suggested in Section 3.3.1.

The values shown in Table 4.2 represent the mean and the standard deviation for each

dispersed parameter after coordinate transformation. The standard deviation for each po-
sition component is the absolute value of 5000 m. All other deviations are given in per-
centages of the mean values. Multiplying the standard deviation by three we obtain the

3t_ values given in Section 3.2.2.

In Section 4.1.2, the model is first simulated using Monte Carlo simulation and a sample
size of 1000 error vectors. The Monte Carlo results provide a good representation of the

system range and, therefore, of the baseline for comparison. Two Monte Carlo runs with
different seed numbers for the random number generator are performed to get two sets of
data.

The study in Section 4.1. is used as follows:

[] to understand the behavior of the model,

[] to verify its implementation with dispersed parameters, and
[] to understand the use of orthogonal arrays for simulation compared to Monte

Carlo simulation.

In Section 4.1.3, we examine system performance based on the same simulations as in
Section 4.1.2. The maximum acceleration and maximum dynamic pressure represent the

performance characteristics. All results are then compared in Section 4.1.4 with respect
to the means and standard deviations. In the last part of Section 4.1, we analyze in great-
er detail the statistics parameters for the geodetic latitude and show how the individual
experiments of orthogonal arrays contribute to the output.

4.1.2 Initial Footprints for Monte Carlo and Orthogonal Array Simulations

In this first study, we present the behavior of the LifeSat model and verify its implemen-
tation by comparing the system's output response with the data obtained by Monte Carlo
and orthogonal array simulation. The focus is on the dispersion of the geographical

parameters longitude and geodetic latitude and on the dispersion of performance parame-
ters J1 and J2, which are the maximum acceleration and the maximum dynamic pressure.
The initial state is chosen in such a way that the selected parameter values result in a
landing position which is close to the desired target area of -106.65 deg longitude and
33.6 deg geodetic latitude.

As mentioned before, a Monte Carlo simulation with 1000 samples is used to obtain a

footprint of the landing range. We have done two Monte Carlo simulations with 1000
samples each by using different seed values for the random number generator and, hence,
have obtained two data sets to calculate the statistics. The two footprints are shown in

Figure 4.1.

Page 68

36-

°

35

33.

32-

31-

30. 30

Longitude (deg) Longitude (deg)

Figure 4.1 - Footprints of Two Monte Carlo Simulations Using 1000 Samples

Each point in Figure 4.1 represents the vehicle's landing position which is the output of
one simulation of the flight trajectory. Most of the points are concentrated in an area
from -106.52 deg to -106.78 deg longitude and from 31.7 deg to 35.5 deg geodetic lati-
tude. In both pictures we find some differences in the position of some of the points, but
this has to be the case since we have two different sample populations. The calculated
statistics provide a measure to identify the differences. To obtain the dispersions in kil-
ometers, a transformation of the coordinate system leads to the following values at a

radius of 6370 km, which represents the Earth radius:

1 deg longitude ---"111.2 km, and

1 deg geodetic latitude & 111.2 km.

Hence, most of the points are placed within a rectangle of the size 30 km x 420 km. This
result represents a large variation around the target position. At this stage we do not
know which of the factors has the highest contribution for the variation.

Having done two Monte Carlo simulations with a sample size of 1000, we now use the
same initial parameter values and dispersions to simulate the trajectory with orthogonal
arrays. Two footprints for the orthogonal array based simulation are shown in Figure 4.2.
Because we are using the same scale for the presentation, it is easy to compare these foot-

prints with the two footprints in Figure 4.1.

In the left picture, we have assigned the dispersed parameters to the orthogonal array
columns as explained in Section 4.1.1. In the right picture, we then have changed the
columns and therefore obtain a different set of factor combinations for 27 experiments.

Because we still use the last nine columns, the first three experiments remain the same.
In experiment 1, all parameters are at level 1; for experiment 2 at level 2; and for experi-
ment 3 at level 3. All the other experiments have modified factor combinations.

Orthogonal Array Based Simulation of the LifeSat Model Page 69

36-

35-

34-

33-

32-_

31

30-

o

36,

35

34
f_

33

°f.t

32

31

30

I •

Longitude (deg) Longitude (deg)

Figure 4.2 - Footprints for Orthogonal Array Based Simulation with 27

Experiments

s

In the footprints for the orthogonal array based simulations, we identify three main

groups of points in the left picture of Figure 4.2. All points are placed at a longitude be-

tween -106.55 deg and -106.75 deg. Four points of one group are placed around 35 deg

geodetic latitude, 19 points are placed around the mean (which is 33.6 deg for geodetic

latitude and -106.65 for longitude), and the last four points are placed around 32 deg. In

the right picture, we do not find these groups but two points which are on the extremes of

the geodetic latitude. One is at a value of 35.4 deg, and one is at a value of 31.4 deg.

Obviously, the points of the footprints for orthogonal array based simulation do not have
a distribution, which can be considered a normal distribution as it "seems" to be in the

Monte Carlo simulation. In Table 4.3, we present the flight statistics for the landing

range. The mean values and standard deviations for longitude and geodetic latitude are

given in Table 4.3. The presented values are estimates of the real populations.

Table 4.3 - Landing Range Statistics

Longitude Longitude Geo. Latitude Geo. Latitude

Method Mean _ (deg) Std. Deviation G Mean _ (deg) Std. Deviation (_

Nominal

Monte Carlo 1

Monte Carlo 2

Orth. Array 1

Orth. Array 2

-106.650

-106.652

-106.651

-106.650

-106.650

0.0541

0.0582

0.0548

0.0547

33.625

33.591

33.581

33.582

33.582

0.808

0.825

0.813

0.813

Page 70

The simulation with all parameters at their mean values is called the nominal flight and is
shown in the first row. Since the nominal flight represents only one flight, there is no
standard deviation value. We deal with a nonlinear model, therefore it is not possible to
estimate the mean in advance as we have seen in Section 2.2.2. But we expect to be close
to the real mean. In the following rows, the results for two Monte Carlo simulations

(with 1000 samples) and two orthogonal array simulations (with 27 samples) are present-
ed, denoted by numbers 1 and 2.

Comparing the mean values for the longitude first, we do not see any significant differ-
ences. The values for standard deviation range from 0.0541 deg to 0.0582 deg. The
values for the orthogonal array are within this range and are almost the same. This stand-
ard deviation represents a value of approximately 6 km. For the geodetic latitude, there is

a slight difference in the mean value between nominal flight and the other simulations.
Now the standard deviation represents a value of approximately 90 km. This is extremely
large because the available target area is only approximately 45 km in length in the di-
rection of geodetic latitude. The values for orthogonal array simulation are again within

the range of the Monte Carlo simulations.

For the verification of our model and comparison of the Monte Carlo and orthogonal
array simulations, it is not important how large the variation in the landing range is. We

are interested in the difference of the output when we use orthogonal arrays to represent
the variation in the noise factors.

Besides the footprint we also want to know the magnitudes of the performance parame-
ters. Outputs and statistics are presented in the next section.

4.1.3 System Performance for Monte Carlo and Orthogonal Array Simulations

Since the covered area of both footprints (Monte Carlo and Orthogonal Array) and also of
the statistics are nearly the same, we expect the same coverage for other outputs. These
are the performance parameters for maximum acceleration and dynamic pressure. We
only present the result of the first orthogonal array based simulation, which appears in the
left picture of Figure 4.2 and on the fourth row in Table 4.3. In Figure 4.3, the relation
between the maximum acceleration and the geodetic latitude is depicted.

Obviously, there is a strong relationship between the geodetic latitude and the maximum
acceleration. Within the range of the geodetic latitude the maximum acceleration varies

between 120 m/s 2 and 160 m/s 2. This is approximately a g-load between 10 and 16. The
relation between the two parameters is almost linear. We are not concerned about the

grouping since the whole range is covered.

A plot of the maximum acceleration versus longitude is depicted in Figure 4.4. In this
figure, we cannot identify any relationship between the parameters. Although there are a
few more points in the middle, the distribution is more "uniform" than in the previous
figure.

Orthogonal Array Based Simulation of the LifeSat Model Page 71

36

35.5

35

$= 34.5

m 34

"==33.5

u 33

_ 32.5
32

31.5 2
.

31

110

-

o• • •

g

120 130 140 150 160

Max. Acceleration (m/s**2)

170

Figure 4.3 - Maximum Acceleration vs. Geodetic Latitude

q=

't=

O

-107.

-106.9-"

-106.8 -"

-106.7-"

-106.6-"

-106.5-"
-106.4."

-106.3 -"

-106.2-

-106.1 ."

-106 -

11

e=

0 120 130 140 150 160

Max. Acceleration (m/s 2)

170

Figure 4.4 - Maximum Acceleration vs. Longitude

Another important performance parameter is the maximum dynamic pressure during
flight. This parameter is the product of density and speed and is described in Section

3.1.5 by 0.5pvr 2. The product of dynamic pressure, reference area, and drag coefficient

provides the value for aerodynamic force because we have neglected the lift-coefficient
term. In Figure 4,5, we see the strong correlation among the two performance parameters
J1 and J2, the maximum dynamic pressure, and the maximum acceleration.

Page 72

¢q

130000-

=

120000-

11OOO0-

100000-

90000-

80000-

7O000-
110

• • :ooo

• %e

120 130 140 150 160 170

Max. Acceleration (nds**2)

Figure 4.5 - Maximum Dynamic Pressure vs. Maximum Acceleration

The range of the dynamic pressure is between 80,000 kg/(ms 2) and approximately

120,000 kg/(ms 2) when we use the described columns of orthogonal arrays for the fac-

tors. The range with Monte Carlo simulation is expected to be larger as it was in Figure

4.1. Again we obtain an almost linear relationship between the parameters.

The mean values and standard deviations for the performance parameters are given in

Table 4.4. The first row again represents the nominal flight, the next two rows the results

of the Monte Carlo simulations, and the last two rows give the orthogonal array based
simulations.

Table 4.4 - Statistics for Performance Parameter

Max. Accel. Max. Accel. Max. Dyn. Pr. Max. Dyn. Pr.

Method Mean _ (deg) Std. Deviation G Mean _ (deg) Std. Deviation O"

Nominal

Monte Carlo 1

Monte Carlo 2

Orth. Array I

Orth. Array 2

141.569

141.490

141.798

141.455

141.457

10.164

10.733

10.355

10.354

100992.8

101092.0

101289.0

100510.0

100511.0

7848.7

8329.1

8452.9

8434.5

The presented statistical values in Table 4.4 have the same tendency for the different
simulation runs as for the landing position. The values for orthogonal array simulation

are within the range of the two Monte Carlo simulations for the maximum acceleration.

Orthogonal Array Based Simulation of the LifeSat Model Page 73

For the maximum dynamic pressure the mean values for orthogonal arrays are smaller
and, although the standard deviation is larger, of the same magnitude.

4.1.4 Comparison of the Statistical Parameters

In the last two sections, we present two Monte Carlo simulations and two orthogonal ar-
ray based simulations along with the nominal flight. Deviations between the mean values
seemed to be very small and those between the standard deviation values not as big. A
comparison of these deviations relative to the smallest value of all cases (including the
nominal flight) provides some first information about the magnitude of the deviations in
percent. We use Tables 4.3 and 4.4 for the calculations. In Table 4.5, the smallest value
always equals 100% and is shown in "bold/italic" style. The other values (given in per-
cent) represent the percentage difference to these values.

Table 4.5 - Relative Differences of Parameter Statistics for Nominal, Monte Carlo,

and Orthogonal Array Simulation

Parameter

Longitude _t

Longitude

G. Latitude _t

G. Latitude

Acceleration _t

Acceleration ff

D. Pressure _t

D. Pressure

Nominal

-106.65 deg

0.13%

0.08%

0.48%

Monte
Carlo I

0.002%

0.0541

0.03%

0.8083

0.02%

10.164

0.6%

7848.7

Monte
Carlo 2

0.001%

7.58%

33.581 deg

2.1%

0.24%

5.6%

0.78%

6.12%

Orthogonal
Array 1

0.0%

1.29%

0.003

0.58%

141.455 m/s 2

1.9%

100,510 kg/(ms 2)

7.7%

Orthogonal
Array 2

0.0%

1.11%

0.003

0.58%

0.001%

1.9%

0.001%

7.5%

The result of the first Monte Carlo simulation represents the smallest standard deviations
for all observed parameters, whereas the second Monte Carlo simulation results in the
highest standard deviations compared to the first one for almost all parameters. The
differences of all parameter mean values are very small (from 0.0 to 0.78%). Larger dif-
ferences only occur in the standard deviation of the dynamic pressure.

From the results in Table 4.5, we justify the following conclusions from comparisons
with the smallest values of mean and standard deviation:

The differences in the estimation of the mean values are very small since all
deviations are smaller than 1%. The deviation is even smaller for orthogonal
arrays than for the Monte Carlo simulation.

Page 74

"1 In the estimation of the standard deviations, the differences between both

Monte Carlo runs are great. Without establishing statistical confidence we

cannot say which value is the "better" estimation.

The differences in the statistics for the dynamic pressure are larger than for the

other outputs.

In summary, in Sections 4.1.2 to 4.1.4 we have compared two Monte Carlo simulations
with two orthogonal array based simulations and the nominal flight. This comparison
was based on statistics for the landing range and two performance parameters. In the fol-
lowing section, we examine the relationship between the statistical parameters and the
experiments in the orthogonal arrays.

4.1.5 Analysis of Orthogonal Array Experiments with Respect to the Geodetic
Latitude

In Figure 4.2, we see that a change in the assigned orthogonal array columns for the
parameters causes a change in the output response of the system. In both cases, we have
two fractions of all possible combinations of a full factorial design (Sec. 2.3). In the
following three figures (4.6 to 4.8), we compare the value for the geodetic latitude, mean,
and standard deviation to see the differences. This output parameter is representative for
all.

In the two histograms in Figure 4.6, geodetic latitude values are shown for each experi-
ment. They are helpful to understand the curves of the mean and the standard deviation.
We are able to find the exact number of an experiment which results in a larger deviation

from the mean value in the output.

i

36

_J

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Experiment No.

30-

1 3 5 7 9 11 13 15 17 19 21 23_.5 27

Experiment No.

Figure 4.6 - Histogram for Geodetic Latitude

The left picture in Figure 4.6 represents the first simulation with orthogonal arrays; the
right picture represents the simulation with changed columns. Since we use the last nine
columns of the orthogonal array L27 (Fig. 2.10), the first three experiments have the same

settings and result in the same output response. From the 4 th to the 27 th experiment, the

Orthogonal Array Based Simulation of the LifeSat Model Page 75

output for each experiment is different. Therefore, the mean values for the geodetic lati-
tude as shown in Figure 4.7 differ from the fourth experiment.

34-

33.9 -_

33.8:

33.,:
"_ 33.62

_,1 5 _•_33.-
"_ 33.4-

_ 33.3.

33.1"i
33-I

0

/
/

33.9-

33.8-

_ 33.7- / _ _./_J
'_ 33.6-"

-V /
33.4-33.3-" [

33.2-/
33.1-"

=

33-

5 10 15 20 25 30 0 5 10 15 20 25 30

Number of Experiments Number of Experiments

Figure 4.7 - Mean Value for Geodetic Latitude for each Experiment

As can be seen in Figure 4.7, we cannot talk about convergence for the mean value. For
both cases the first three experiments have the same values, but experiment 4 gives
different directions to the curve. Although the curves are different at experiment 27 the
mean values are corresponding, which is quite surprising.

The behavior of the standard deviation for the geodetic latitude is shown in Figure 4.8.
The first experiment must have a value of zero. With the following experiments the value
increases.

The behavior can easily be understood when we look at values for the geodetic latitude
for each experiment as shown the histograms in Figure 4.6. After the first three experi-
ments in the left picture of Figure 4.8, the highest increase in the standard deviation is a

result of experiments 14, 15, 16, and 17. Experiments 14 and 17 have a high value and
experiments 15 and 16 have a low value relative to the mean. In the right picture, there
are three smaller increases due to experiments 10 and 11, experiments 17 and 18, and ex-
periments 22 and 23.

After 27 experiments the values for both cases are the same although we have different
factor combinations and, hence, different outputs. In Tables 4.3 and 4.4, we have seen
that we obtain approximately the same values for the longitude and for the two perform-

ance parameters.

Page 76

,._ 1- ,._

o.9-:.
°.8"! _ .=

•,_ 0.7. _ _ [_

o.4-i _j "J
_ o.3.: F '''_ "_

o.2.::/ ,! i
O._

0 5 3030 15 20 25 0 5 10 15 20 25

Number of Experiments Number of Experiments

Figure 4.8 - Standard Deviation for Geodetic Latitude

30

From all the results presented we draw the following conclusions and answers to previ-
ously posed questions:

Estimations of mean and standard deviation for output parameters using orth-

ogonal arrays are obtained only after all the predetermined experiments are
executed.

[] There seems to be no such thing as convergence. But after all experiments are
performed, the values obtained are very accurate compared to the Monte Carlo
simulation and the nominal flight.

[] The differences between the two Monte Carlo simulations are larger than the
differences between the two orthogonal array simulations. The reason might
be that one of the three levels for orthogonal arrays is the mean value of the

parameter.

We now expect orthogonal array based simulation to be a feasible approach
compared to Monte Carlo simulation.

The next question to be answered is: How confident are we that the approach is feasible?
This is discussed in the following section.

4.2 STATISTICAL CONFIDENCE OF ORTHOGONAL ARRAY BASED

SIMULATION

The question arising now is: Do the statistical results from orthogonal array simulations
represent the same population as the results obtained by Monte Carlo simulation?

Orthogonal Array Based Simulation of the LifeSat Model Page 77

To answer this question, we compare ten different runs of Monte Carlo simulation with
ten runs of orthogonal array simulation. Each Monte Carlo result is based on a sample
size of 1000 and the random number generator always has a different seed value. For
orthogonal array simulation, we have 27 individual simulations. For the ten orthogonal
array based simulation runs, factors are assigned to different columns in the OA L27.

We choose values of the geodetic latitude for the test of confidence that are representative
of all other parameters. For each of the ten runs (sample size 10), we calculate the mean
and the standard deviation as before. An important theorem found in [Sokal and Rohlf,

1981] is: The means of samples from a normally distributed population are themselves

normally distributed, regardless of sample size n. Thus, we note that the means of our
ten samples are normally distributed. The same property is valid for the standard devi-
ation and other statistics. The standard deviation of the means, standard deviations, etc.

is known as standard error [Sokal and Rohlf, 1981]. More information about standard
error is found in [Sokal and Rohlf, I981]. For both simulation methods, we calculate the
average of the mean and the standard deviation and also calculate the standard error for
these statistics. The results for each run and calculations are shown in Table 4.6.

Table 4.6 - Distribution of Means and Standard Deviations for Ten Monte Carlo

Simulation and Ten Orthogonal Array Simulation Runs

10 x Monte Carlo (1000) 10 x Ort. Array (27)
Latitude (IQ Latitude ((_) Latitude (j_) Latitude

33.588 0.642 33.592 0.641
33.603 0.678 33.593 0.633
33.599 0.698 33.593 0.619
33.591 0.654 33.590 0.671
33.596 0.648 33.592 0.544
33,588 0.663 33.591 0.642
33.601 0.672 33.591 0.654
33.606 0.657 33,590 0,661
33.601 0.669 33.591 0.649
33.574 0.660 33.592 0,637

33.595 0.664 33.592 0.645

0.0096 0.0161 0.0011 0.0147

(0)

Average

Standard Error

The difference in the standard error for the means as shown in the last row of columns 1

and 3 is very large, but it is small compared to the standard error of the standard

deviations (r with respect to the magnitude of the values. We mean that a standard error

of 0.01 for a mean value of 33.6 is small compared to a mean of 0.66. For orthogonal
array simulation, the standard error for the means is approximately ten times less than for
Monte Carlo simulation. The average mean values are almost the same. But the differ-
ence of the standard error of standard deviations between the two methods is very small.

The values in the average of the standard deviations have a small difference. In Figure
4.9, the distribution of the standard deviation is shown for the geodetic latitude obtained
from the Monte Carlo simulation and orthogonal array simulation.

Page 78

30

25

"_ 20

,o

5

0

0.55

Orthogonal Array /_

Simulation I X \ Monte C,arlo

0.6 0.65 0.7 0.75

Average Standard Deviation

of Geodetic Latitude

Figure 4.9 - Distribution of Average Standard Deviation for Ten Monte Carlo and
Ten Orthogonal Array Simulations for the Geodetic Latitude

We observe that there is a difference between the two distributions. The orthogonal array
simulations result in a smaller mean (average of all standard deviations) and a standard
error. To verify the observed difference we need a statistical calculation. We want to an-
swer the following question:

Is sample 1, with a mean of 0.664 and a standard deviation of O.O161, from

the same population as sample 2, with a mean of 0.645 and a standard devia-

tion of 0.0147?

A method to analyze the difference between two sample means is the t-test. The t-test is a

traditional method to solve our problem [Sokal and Rohlf, 1981]. The quantity t has a
distribution very similar to the standard normal distribution [Dunn and Clark, 1987]. It is
described in more detail elsewhere [Dunn and Clark, 1987; Sokal and Rohlf, 1981].
When we have two equal sample sizes (ten in our case), we calculate the t value from

B m

t - Y1 - Y2 _ 0.664 - 0.645 - 2.61 (4.2)

t! 2 i 0"01612
s +s 2 + 0.01472

1 9

m

In Equation (4.2), Yi is the means of the standard deviations and si is the standard errors.

Comparing the value with the table values for nine degrees of freedom, we obtain values
for standard deviation which are the same in at least 97.5% of all the cases. This is an

important result since it says that we obtain a high confidence in the results of orthogonal
array-based simulations compared to Monte Carlo simulation.

Orthogonal Array Based Simulation of the LifeSat Model Page 79

We perform two additional runs, one with Monte Carlo simulation and 10,000 samples,
and one with orthogonal arrays and 81 experiments. For 81 experiments, we simply use
nine columns of the OA L81 from a maximum of 40 columns. The results for these two
simulations are shown below:

Estimation of the geodetic latitude with 10,000 Monte Carlo simulations

B = 33.591 deg,

= 0.659.

Estimation of the geodetic latitude with 81 Orthogonal Array simulations

[.t = 33.598 deg,

(_ = 0.674.

For the Monte Carlo simulation, the mean is farther away from 33.6 deg and the standard

deviation is lower than in the previous case. For orthogonal array simulations, the mean
is closer to 33.6 deg and the standard deviation is higher than the previous average for
Monte Carlo simulations. Thus, any simulation technique provides results within a cer-
tain confidence interval around the actual population mean. But simulation with orthogo-
nal arrays has a smaller standard error that the Monte Carlo simulation.

For additional information many more samples have to be evaluated and different levels
for orthogonal arrays have to be compared. Although the results are not exactly the same
for both simulation techniques, we continue our study with the analysis of variance.

4.3 ANALYSIS OF VARIANCE FOR THE TRAJECTORY SIMULATION

In Section 2.5, we introduce analysis of variance as a tool for the analysis of experimental
data. We are able to calculate factor effects on the variation of the data. We apply
ANOVA to evaluate the contribution of noise factors to the performance of the LifeSat
vehicle. Performance is determined by the landing position and by the performance pa-
rameters. We select the geodetic latitude to study the factor effects for a simulation,
which will be used for a robust design example. In Sections 4.1 and 4.2, we disperse the
x, y, z components for position and speed. Both times, although the mean is on target,
there is a large variation around this target. When we reduce the tolerances for the initial
position components from 5000 m to 2000 m, a reduced variation in the footprint (com-
pare Figures 4.1 and 4.9) is obvious. We reduce the variation in the following sections of
the initial position further by dispersing altitude, flight path angle and azimuth (Sec.
3.1.3). In Section 4.3.1, we calculate factor contributions with Monte Carlo simulation

and do the same with orthogonal arrays and ANOVA in Section 4.3.2.

4.3.1 Factor Contributions with Monte Carlo Simulation

In the following example, we disperse the parameters of the initial state before we trans-
form them into the Cartesian coordinate system for the simulation. In Table 4.7, we

Page 80

present the new dispersions for the initial state and the dispersions for mass, density, and

drag coefficient, which remain at their previous values.

Table 4.7 - Parameter Statistics

Parameter Mean _t

9946.5 m/sInitial Velocity

Longitude

Geodetic Latitude

Vehicle Mass

Density

Drag Coefficient

Altitude

Flight Path An_le

Azimuth

-106.65 de[

44.2

1560.4 k_

1.2 k_/m 3

0.6679

121920.0m

-5.88 de_

180.0 deg

Std. Deviation

0.667%

1.667%

10%

1.667%

250.0m

0.25%

0.333%

In the following, we vary each factor alone by using 1000 sample points for Monte Carlo

simulation. Recall Equation (2.12), where the sum of squares is calculated from

N T 2 N

SST _-_Y_ N - _y_-CF (4.3)
i=l i=t

We are interested in the effect of each parameter on the variation of the output. By vary-

ing one parameter each time, we calculate a total sum of squares for the output variation

that is due to only one factor. From the sum of all individual total sum of squares (SST),
we calculate the individual factor contribution. Remember that we study the effects for

the geodetic latitude. The parameters, the total sum of squares, and the percentage of
contributions are shown in Table 4.8.

Note that only seven parameters are shown in Table 4.8. The sum of squares for azimuth

and longitude has no significant value and is summarized in "other". This sum becomes

part of the error term later in this section when we analyze the orthogonal array based re-
suits with ANOVA.

Orthogonal Array Based Simulation of the LifeSat Model Page 81

We observe that the variation of the density has the highest influence on the variation of

the geodetic latitude with a 45% contribution. The next largest contributor is the velocity
with 22%. Vehicle mass, altitude, and flight path angle have approximately equal influ-
ences of 5%. The drag coefficient has only an insignificant contribution. The sum of all
individual sum of squares is SST = 61.825.

Table 4.8 - Factor Contribution to the Variation of Geodetic Latitude

Parameter

Initial Velocity

Latitude

Total Sum of
Squares (SST)

13.975

% Contribution

22.6

3.366 5.44

Vehicle Mass 2.773 4.49

0.814 1.32

27.901 45.1

2.902

2.765

0.813

Vehicle Drag Coefficient

,,r Density

Altitude

Flight Path Angle

Other

4.69

4.47

1.31

In another simulation we vary all parameters at the same time again with a sample size of
1000. The total sum of all factors varied at once is SST = 48.66. This is much less than
the sum of all individual variations (SST). Thus, we should not study the effects of pa-

rameters by varying one parameter at a time.

4.3.2 Factor Contributions with ANOVA and Orthogonal Array Simulation

To obtain the presented Table 4.8 we do 1000 simulations for each factor, which is a total
of 9000 for all nine factors. If we vary all factors at once, we still have to simulate 1000
sample points. The use of orthogonal arrays and ANOVA provides a capable tool with
which to estimate the factor contributions with much less effort. Factors azimuth and

longitude are pooled into the error since they have no significant contribution. With
ANOVA we do only 27 experiments to estimate all of the factor effects. In Section 2.5,
all equations (Equations (2.11) to (2.21)) for the analysis are presented. We have imple-
mented these equations into a computer program. The results of implementation and the
ANOVA table are shown in Table 4.9.

In Table 4.9, the data are described first. The ANOVA table includes seven factors with
their contributions, the error term, and the total. We need to identify which factor number

represents which parameter.

Factor 1 --> Density

Page82

Factor 2 --> Vehicle Mass

Factor 3 --> Drag Coefficient
Factor 4 --> Velocity
Factor 5 --> Flight Path angle
Factor 6 --> Altitude
Factor 7 --> Geodetic Latitude

Factors 8 and 9 are the longitude and the azimuth. Their contribution is pooled [Roy,
1990; Ross, 1988] into the error term since their contribution is insignificant. Each value

for the sum of squares of the first seven factors is larger than the error sum of squares.

Table 4.9 - Results and ANOVA Table for the Variation of Geodetic Latitude

DESCRIPTION OF DATA

Number of points: 27
Mean: 33.5919

Standard deviation: 0.2269

Variance: 0.0515

ssTot: 1.3383

Sum: 906.9821

Sum of squares: 30468.6152

Interval mean + 1" st.dev.:

Interval mean _-_.2"st.dev.:

Interval mean +3*st.dev.:

(33.3651, 33.8188)

(33.1382,34.0457)

(32.9113, 34.2725)

ANOVA FOR THE DISPERSIONS
.................................

Source: f SS V F % Perc. Confidence
...

0.6895 0.3447 211.8000 49.14% 100.00%Factor 1: 2

Factor 2:2 0.1289 0.0645

Factor 3:2 0.0215 0.0107
Factor 4:2 0.3496 0.1748

Factor 5:2 0.0566 0.0283

Factor 6:2 0.0605 0.0303

Factor 7:2 0.0703 0.0352

Factor 8: Pooled

Factor 9: Pooled

Error: 12 0.0195 0.0016

39.6000 9.00% 100.00%

6.6000 1.31% 98.83%

107.4000 24.80% 100.00%

17.4000 3.82% 99.97%

18.6000 4.10% 99.98%

21.6000 4.80% 99.99%

Total: 26 1.3965
...

Now we compare these data from the orthogonal array based simulation with the data
obtained by Monte Carlo simulation, shown in Table 4.8. The results are similar but have
some differences. The effects of density, velocity, flight path angle, altitude, geodetic
latitude, and drag coefficient are approximately the equal for both simulation techniques.
The largest difference is found in the contribution of the vehicle mass, which is twice as
much for orthogonal array simulation as for Monte Carlo simulation. At this point we

Orthogonal Array Based Simulation of the LifeSat Model Page 83

cannot tell which estimation is more accurate. But we must remember the difference for

Monte Carlo simulation in the dispersion of each factor individually and of all factors
together. All seven factors have a confidence level of greater than 98%. This means we
have a confidence of at least 98% that each of the factors is contributing to the variation
in the geodetic latitude.

In summary we can say that ,by using orthogonal array based simulation and ANOVA,
we obtain as much information with only 27 experiments as by using Monte Carlo simu-

lation. The density has the largest contribution of approximately 50%, followed by the
velocity with 25%. The third largest contributor is mass with 9%. The drag coefficient
has the smallest effect with only 1.3%. If we group these results into three categories, we
obtain the following:

[] Environmental dispersions have 50% contribution.

[] Initial state dispersions have 37% contribution.

"_ Vehicle parameter dispersions have 10% contribution.

All of the dispersions are not controllable by a designer. They are called noise factors as
defined in Section 2.1. How we improve a design without controlling the noise is shown
in the following section.

4.4 ROBUST DESIGN FOR THE TRAJECTORY SIMULATION

In Section 2.1, we define the quality characteristic for the LifeSat vehicle as the ability to
follow the desired trajectory and land on target. The more we deviate from the target, the
higher the quality loss (Sec. 2.1.1). Although the vehicle is designed to land on target,
noise factors cause a variation in the landing position. The fundamental principle of ro-
bust design is to improve the quality of a product by minimizing the effect of the causes
of variation without eliminating the causes [Phadke, 1989]. What we want is a measure-
ment of quality during the design and development phase. We also want to obtain this
particular information with a minimum of effort or time.

In this section, we use the signal-to-noise ratio r I as the measurement for quality. This is

a single number which represents the sensitivity of the system's function to noise factors.
In a robust design project, the signal-to-noise ratio is maximized. We further show the
difference in the use of the standard deviation.

4.4.1 Designing Experiments for Robust Design

Assume that a robust design problem for the LifeSat vehicle is available for which a
designer has the three control factors. These control factors are the vehicle mass, initial
velocity, and flight path angle. Assume further that the designer wants to find the best
parameter values to make the vehicle land on target for average performance and also to
obtain the least variation around this target. From previous information the designer
knows that the mass can vary between 1460 kh and 1660 kg, the velocity between 9846.5

Page84

m/s and 10046.5 m/s, and the flight path angle between -5.78 deg and -5.98 deg. These
values represent the bounds. The ranges are small but sufficient to show the method.

If we have three factors and select three levels for each factor, the best suitable orthogo-

nal array is L9. For the factor levels, we select the lower bound, upper bound, and middle
value. In Table 4.10, these levels are presented for each factor.

Table 4.10 - Factor Levels for Robust Design Project

Level
Factor 1 2 3

Vehicle Mass (kg) 1460.0 1560.0 1660.0
Velocity (m/s) 9846.5 9946.5 10046.5

Flight Path Angle (deg) -5.78 -5.88 -5.98

Assigning the three factors to the first three columns of L9, we obtain nine experiments
with factor combinations as shown in Table 4.11. Note that this is a change from previ-
ous studies where we use the last columns of the orthogonal array. This choice does not

influence the principal results.

Table 4.11 - Experiments for Robust Design Project

Experiment

1
2
3
4
5
6
7
8
9

Mass (kg) Velocity (m/s) Flight Path Angle
(deg)

1460.0 9846.5 -5.78
1460.0 9946.5 -5.88
1460.0 10046.5 -5,98
1560.0 9846.5 -5.88
1560.0 9946.5 -5.98
1560.0 10046.5 -5.78
1660.0 9846.5 -5.98
1660.0 9946.5 -5.78
1660.0 10046.5 -5.88

Each of these nine experiments is simulated using the same noise factor dispersion as
shown in Table 4.7. Our control factors are noise factors, too. The nine experiments of

L9 are called inner array. We still use the orthogonal array L27 to represent and disperse
the nine noise factors. This is called the outer array. To obtain one result for one exper-

iment of L9, we simulate 27 experiments of L27.

4.4.2 Evaluation of Results from Robust Design Study Using Signal-to-Noise Ratio,

Standard Deviation, and Mean

Previously, the target value for the geodetic latitude was 33.6 deg. We calculate the
signal-to-noise ratios (SNs) for three new target values (T1, T2, T3) for the geodetic lati-
tude, which are

Orthogonal Array Based Simulation of the LifeSat Model Page 85

-_ T1 = 33.7 deg,
T2 = 33.5 deg, and
T3 = 33.3 deg.

By Equation (2.4), the value of the signal-to-noise ratio depends on the target value. We
calculate the mean and the standard deviation of the geodetic latitude, which are indepen-
dent from the target. The results of the simulation of the experiments are shown in Table
4.12.

Table 4.12 - Experiments for Robust Design Project

Geodetic Latitude

Experiment p, 0" SN (T1) SN (T2) SN (T3)
1
2
3
4
5
6
7
8
9

33.572 o.219 11.78 12.58 9.07
33.692 o,215 13.16 lO.7O 6.94
33.817 o.211 12.23 8,34 5.04
33.755 0.209 13.14 9,57 5.98
33.870 0.205 11.37 7.42 4.32
33.092 0.246 3.63 6.34 9.73
33.933 0.200 10.19 6.40 3.55
33.178 0.237 4.80 7.90 11.33
33.311 0.232 6.83 10.37 12.49

The range for the mean value varies from 33 deg to 34 deg. Note that each value is the
average of the 27 experiments from the outer (noise) array. The standard deviation
ranges between 0.2 and 0.25. The values of the signal-to-noise ratio depend on the target.
The highlighted numbers represent the best designs with respect to the standard deviation
and the signal-to-noise ratio. We observe that the smallest standard deviation does not
correspond with the highest signal-to-noise ratios since the mean value is far away from
one of the targets. For target T1, experiment 2 has approximately the same signal-to-
noise ratio as experiment 4. Although the mean value is closer at the target, the variation
is larger around this mean compared to the variation in experiment 4. The signal-to-noise
ratio combines the two measures of variation and meeting the target.

How can we now find a better design from this information? We compare three different
strategies.

:a Take the experiment with the smallest variation and adjust the mean to the de-
sired target value.

Find the factor levels with the least variation and run a verification test using
these levels.

Do the same as in the second strategy and then adjust the mean on target.

To adjust the mean on target, we use the initial value for the geodetic latitude and change
it by the value of the bias between mean and target. We have not introduced the initial

Page 86

geodetic latitude as a design parameter since we only expect a bias in the output of the
geodetic latitude with a change of its initial value. We further use only T1 and T3 as the

targets to be investigated.

To study the average output sensitivity of a factor on one level---e.g., on level 1--we
calculate the mean of the response with all experiments when the factor is on level 1. The
factor velocity is on level 1 at experiments 1, 4, and 7. The average of the geodetic lati-
tude is (33.57 + 33.76 + 33.93)/3 = 33.75. Similarly, we calculate the mean values for
levels 2 and 3 and for the other factors. The results are shown in Table 4.13 for the mean

of the geodetic latitude, the standard deviation, and two of the signal-to-noise ratios. The
three control factors are denoted by A, B, and C. We want to refer to the factor levels as
A I, for factor A on level 1, etc.

Table 4.13 - Level Means for System Performance

Level Means for Latitude (deg)
Factor 1 2 3

A: Vehicle Mass (kg)
B: Velocity (m/s)
C: Flight Path Angle (deg)

33.694 33.572 33.474
33.753 33.58 33.407
33.281 33.586 33.873

Level Means for Standard Deviation
Factor 1 2 3

A: Vehicle Mass (kg)
B: Velocity (m/s)
C: Flight Path Angle (deg)

0.215 0.220 0.223
0.209 0.219 0.230
0.234 0.219 0.205

Level Means for SN Ratio (T1)
Factor 1 2 3

A: Vehicle Mass (kg)
B: Velocity (m/s)
C: Flight Path Angle (deg)

12.39 9.38 7.27
11.70 9.78 7.57
6.74 11.05 11.26

Level Means for SN Ratio (T3)
Factor 1 2 3

A: Vehicle Mass (kg)
B: Velocity (re�s)
C: Flight Path Angle (deg)

7.02 6.68 9.12
6.20 7.53 9.09
10.04 8.47 4.30

When we choose T1 as the target, from the first table, we observe that level 1 for A, level
1 for B, and level 2 for C have average values closest to the target of 33.7 deg. But none
of these values is exactly on target. In the second table, we show the level means for the
standard deviation. These level means are calculated as before using the corresponding
values for each level and factor. Again we observe the smallest standard deviations for
factors A1, B1, and C3. This is also the case when we observe the third table for the
signal-to-noise ratio of T1. Thus we conclude that, for a target of T1 = 33.7 deg, the fac-
tor combination A1, B1, and C3 results in the best performance with respect to the geo-
detic latitude. But if the target changes to T3 = 33.3 deg, each of the previous levels is on
its lowest value for the signal-to-noise ratio. Now the factor combination A3, B3, and C1
is expected to result in the best performance. Therefore, we have shown that a combined

representation of deviation from the target and standard deviation is preferable. This is
implied in the signal-to-noise ratio.

Orthogonal Array Based Simulation of the LifeSat Model Page 87

In Figures 4.10 and 4.11, the average sensitivity of geodetic latitude and its standard
deviation is depicted. The values are the same as those in Table 4.13. Since level 2 for
all factors corresponds to a design with target T = 33.6 deg, the average values for the
geodetic latitude also approximate this target.

34

33.8

"_ 33.6

_ 33.4

_ 33.2

33

e Mass !
I -----a--- Velocity

.--w-- Flight Path

Level 1 Level 2 Level 3

Factor Levels

Figure 4.10 - Average Sensitivity of Geodetic Latitude to Factor Levels

As can be seen in Figure 4.10, the flight path angle has the highest differences between
the three levels and opposite direction in the effect on the geodetic latitude. Mass and ve-
locity have equal influence on the output. These results are different from the results ob-
tained from the analysis of variance. Each level now is the mean value for the dispersion
of the factor. Although the lines in Figure 4.10 are linear, we do not know the behavior
between two levels.

We perform another analysis of variance for the mean of the geodetic latitude, the results
of which are shown in Table 4.14. For the three factors mass (factor 1), velocity (factor

2), and flight path angle (factor 3), we obtain results corresponding to the trends shown in
Figure 4.10

The vehicle mass contributes the smallest value (9%) to the variation. Approximately
twice as much contributes the velocity, and the flight path angle is responsible for two-
thirds of the total variation. These values confirm the magnitude of slopes of the curves
in Figure 4.10, but we cannot identify the sign of the slope with ANOVA. The variation
due to noise, which is contained in the error sum of squares, is small compared to the var-
iation owing to factor level changes. With the application of ANOVA, we obtain more
information about the sensitivity of the output than by calculating the average perform-
ance only. We depict the sensitivity of the standard deviation in Figure 4.11, which is the
graphical representation of the second table in Table 4.13. The same could also be done
for the signal-to-noise ratio.

Page 88

Table 4.14 - ANOVA Table for the Variation of Geodetic Latitude

DESCRIPTION OF DATA

Number of points: 9
Mean: 33.5800

Standard deviation: 0.3123

Variance: 0.0975

ssTot: 0.7802

Sum: 302.2200

Sum of squares: 10149.3281

Interval mean +l*st.dev.:

Interval mean +_2*st.dev.:
Interval mean + 3*st.dev.:

(33.2677, 33.8923)

(32.9554, 34.2046)

(32.6431, 34.5169)

ANOVA FOR THE DISPERSIONS

.................................

Source: f SS V F % Perc. Confidence

...

Factor 1:2 0.0723 0.0361 74.0000 9.14% 98.67%

Factor 2:2 0.1797 0.0898 184.0000 22.90% 99.46%

Factor 3:2 0.5273 0.2637 540.0000 67.46% 99.82%

Error: 2 0.0010 0.0005
........ - ..

Total: 8 0.7803

..

0.25

0.24-

:_ 0.23-

i 0.22-

0-21 -

0.2

_ Vehicle Mass I
Velocity

---4t.-- Flight Path

I I T

Level 1 Level 2 Level 3

Factor Levels

Figure 4.11 - Average Sensitivity of Standard Deviation to Factor Levels

Orthogonal Array Based Simulation of the LifeSat Model Page 89

In Figure 4.11, the average sensitivity to the standard deviation is shown. The flight path
angle has the largest influence, and the smallest value for the standard deviation is ob-
tained at level 3 (C3). The slopes are opposite compared to their influence on the mean.

Taking the experiment with the smallest variation and adjusting the mean on target is one
of the strategies to improve the design The experiment with the smallest standard devia-
tion is experiment 7 with factor levels A3, B1, and C3. As shown in Table 4.12, the devi-
ation from the target mean of T1 = 33.7 is (33.933 - 33.7) deg = 0.233 deg. We assume
that the initial geodetic latitude behaves like a scaling factor since a change in this value
results in an almost proportional change in the value for the final geodetic latitude. Ac-
cording to the deviation from the target, we change the initial geodetic latitude from 44.2
deg to (44.2 - 0.233) deg = 43.967 deg and perform one simulation, the verification ex-
periment, again with factor levels A3, B1, and C3. We obtain the following results which
represent the mean, the standard deviation, and the signal-to-noise ratio:

= 33.6998 deg,

= 0.200, and

SN= 13.819.

This result has the mean on target (T1 = 33.7 deg) and the standard deviation is un-
changed. The signal-to-noise ratio is higher than all the previous ratios with a value of
SN = 13.819; hence, this is an improved design with higher quality than before.

For the second strategy, we select the factor levels with the highest average signal-to-
noise ratio. The selection of factor levels with the smallest average standard deviation is

equivalent in this case. These factor levels are the ones marked in Table 4.13 (second and
third table), which is level 1 for factor A (A1) that has a signal-to-noise ratio of SN =

12.39 and a standard deviation of _ = 0.215. These average values are preferable with

respect to our quality characteristics compared to lower values of the signal-to-noise ratio
and higher values for the standard deviation on levels A2, and A3. Similarly, we select
level 1 for factor B (B 1), and level 3 for factor C (C3). For the verification experiment
using the selected levels A1, B1, and C3, we obtain the following results from the simu-
lation with orthogonal arrays:

bt = 34.12deg,

= 0.195, and
SN = 6.705.

The mean for the geodetic latitude has a value of g = 34.12 deg and is (34.12 - 33.7) deg

= 0.42 deg away from the desired target. Thus, the signal-to-noise ratio is very low al-
though the standard deviation is small. The combination of factor levels with the lowest

average standard deviation has resulted in an even lower value of _ = 0.195. We see how

important it is to verify the suggested factor levels. If we especially take the factor C at

level C3 with an average mean value for the geodetic latitude of g = 33.87 deg, this

brings us to the new mean of I.t = 34.12 deg. Thus, level C2 could have resulted in a

better value. But now we need to adjust the mean on the target as suggested in the third

Page 90

strategy, by changing the initial latitude according to the bias of 0.42 deg to (44.2 - 0.42)
deg = 43.78 deg. We obtain the following values from the simulation:

_t = 33.70deg,

= 0.1946, and
SN = 14.037.

This is obviously the best design we get from the analysis of only nine experiments. The

settings of the parameters result in the smallest standard deviation, which is t_ = 0.1946,

and the highest signal-to-noise ratio with a value of SN = 14.04. Our most robust design
to all the effects of the noise factors has the following values for the design parameters by

using the suggested factor levels A1, B1, and C3:

Vehicle mass = 1460 kg,
Velocity = 9846.5 m/s, and
Flight path angle = -5.98 deg.

We recognize that we have to use the initial geodetic latitude as an adjustment factor to
get the mean on target. Without the ability to adjust the mean on target, we would choose
the factor levels which give the highest signal-to-noise ratio for one experiment. This is
experiment 2 in Table 4.12 with a signal-to-noise ratio of SN = 13.16.

As mentioned, we obtain all of these results and information with only nine experiments.

Of course, we need to perform 27 simulations in the outer array to simulate the effects of
the noise factors. This is done for each of the nine experiments (Table 4.11) where we

change the levels of design parameters. This is a total of 27 x 9 = 243 flight simulations,
which is one quarter (25%) of the number of Monte Carlo simulations (if we use 1000
samples) necessary to evaluate only one design. The time saved with orthogonal arrays
by using 27 experiments is larger than 95% of the time used for Monte Carlo simulations.
Therefore, simulations based on orthogonal arrays seems to be qualified to substitute for
Monte Carlo simulations.

4.5 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

In Section 4.1, we compare the landing range with footprints obtained from Monte Carlo
simulation and orthogonal array based simulation. We compare statistics and examine
the influence of experiments in the orthogonal array. In Section 4.2, we assess the statis-
tical confidence in the orthogonal array simulations. Analysis of variance is applied in
Section 4.3, and results from Monte Carlo simulation are compared with those of orthog-

onal array simulation. With the robust design study in Section 4.4, we show how the
robustness of a product is easily improved. The use of the signal-to-noise ratio is verified
representing in a single number what is otherwise represented by the mean and the stan-
dard deviation.

In summary, we find the following answers to previous questions:

7 The use of orthogonal arrays for simulation is an alternative to Monte
Carlo simulation.

Orthogonal Array Based Simulation of the LifeSat Model Page 91

:_ We establish the confidence for a reduced number of simulations with

statistical tests and comparison of results.

The signal-to-noise ratio is a measurement for quality and robust de-
sign which enables a designer to improve a product with a small num-
ber of experiments.

By using ANOVA, we are easily able to estimate the factor influences
on output variations.

In the next chapter, we change the task of robust design to find the best factor levels. By
using a compromise DSP, we obtain continuous values for the factors but not levels. This
enables a designer to further improvements in the design.

Page 92

CI-IAPTER 5

ROBUST DESIGN USING A COMPROMISE DSP

The compromise decision Support Problem, DSP, is a decision model that supports
design decisions in the early stages. In this chapter, we develop the mathematical formu-
lation for a compromise DSP for the LifeSat model. Multiple objectives are formulated
and solutions are obtained for different priorities for the objectives. Exploration of design

space is presented as a useful tool during the initial phase of designing. Four different
scenarios are investigated. We use three different starting points to validate the solutions.

Robust Design Using a Compromise DSP Page 93

5.1 THE COMPROMISE DSP AND LEXICOGRAPHIC MINIMIZATION

Compromise DSPs are used to model engineering decisions involving multiple trade-offs.
In this chapter, we show how to apply such decision models in robust design. We show
how different scenarios are formulated and solved numerically. Further, we reflect on
which quality aspects we want to focus in our design.

Given

An alternative to be improved through modification.
Assumptions used to model the domain of interest.
The system parameters:
n number of system variables
p+q number of system constraints
p equality constraints
q inequality constraints
m number of system goals
gi(X) system constraint function:

gi(X) = Ci(X_) - Di(X)
fk(di) function of deviation variables to be minimized at priority level k

for Preemptive case.

Find

Xi i= 1..... n

di, d + i= 1..... m

Satisfy
System constraints (linear, nonlinear)

gi(X) = 0; i = 1..... p
gi(X) > 0; i = p+l p+q

System goals (linear, nonlinear)

Ai(X) + di-- d+l = Gi; i = 1..... m

Bounds

Xi rain _< X i < ximax ; i = 1..... n

d_,d_ > 0; i = 1..... m

(d_.d+l = 0; i = 1.... ,m)

Minimize

Preemptive (lexicographic minimum)

Z = [fl(d_, d_) fk(d_, d+l)]

Figure 5.1 - Mathematical Form of a Compromise DSP

Page94

As stated in Chapter 1, the compromise DSP is a multiobjective programming model that
we consider to be a hybrid formulation [Bascaran et al., 1987; Karandikar and Mistree,
1991; Mistree et al., 1992]. It incorporates concepts from both traditional Mathematical

Programming and Goal Programming (GP). In the compromise formulation, the set of

system constraints and bounds defines the feasible design space and the sets of system

goals define the aspiration space. For feasibility, the system constraints and bounds must
be satisfied. A satisficing solution, then, is that feasible point which achieves the system

goals as far as possible. The solution to this problem represents a trade-off between that
which is desired (as modeled by the aspiration space) and that which can be achieved (as

modeled by the design space).

The mathematical formulation of a compromise DSP is presented in Figure 5.1.

Each goal Ai has two associated deviation variables di- and di + which indicate the devia-
tion from the target [Mistree et al., 1992]. The range of values of these deviation vari-

ables depends on the goal itself. The product constraint di + . di- = 0 ensures that at least
one of the deviation variables for a particular goal will always be zero. If the problem is

solved using a vertex solution scheme (as in the ALP-algorithm [Mistree et al., 1992]),
then this condition is automatically satisfied. Goals are not equally important to a deci-
sion maker. To effect a solution on the basis of preference, the goals may be rank-
ordered into priority levels. We should seek a solution which minimizes all unwanted
deviations. There are various methods of measuring the effectiveness of the minimiza-
tion of these unwanted deviations. The lexicographic minimum concept is necessary to
the solution of our problem. The lexicographic minimum is defined as follows [Ignizio,
1985]:

LEXICOGRAPI-IIC MINIMUM Given an ordered array f = (fl, f2, ..., fn) of

non-negative elements fk's, the solution given by f(l) is preferred to f(2) if

fk (1) < fk(2)

and all higher order elements (i.e. fl fk-1) are equal. If no other solution is

preferred to f, then f is the lexico_raphic minimum.

As an example, consider two solutions, f(r) and f(s), where

f(r) = (0, 10, 400, 56)
and

f(s) = (0, 11, 12, 20).

In this example, note that f(r) is preferred to f(s). The value 10 corresponding to f(r)

is smaller than the value 11 corresponding to f(s). Once a preference is established,
then all higher order elements are assumed to be equivalent. Hence, the deviation

function Z for the preemptive formulation is written as

Z = [fl (d-, d +) fk(d', d +)].

For a four-goal problem, the deviation function may look like

Robust Design Using a Compromise DSP Page 95

Z(d', d +) = [(d 1- + d2-), (d 3-), (d4 +)]

In this case, three priority levels are considered. The deviation variables d 1- and d 2-

have to be minimized preemptively before variable d 3- is considered and so on. These

priorities represent rank; that is, the preference of one goal over another. No conclusions
can be drawn with respect to the amount by which one goal is preferred or is more impor-
tant than another.

5.2 ROBUST DESIGN USING THE COMPROMISE DSP

Phadke [Phadke, 1989] provides guidelines for selecting quality characteristics, but like
many others he uses only one characteristic per problem. We believe that it is difficult, if
not impossible, to find one single metric for assessing the quality of a process (for ex-
ample, [Karandikar and Mistree, 1992]). In our opinion, since there are multiple objec-
tives to be satisfied in design, there must be multiple aspects to quality. Therefore, we
assert that quality loss is dependent on a number of quality characteristics with different
importances. Quality involves trade-off and the desired quality cannot always be achiev-
ed. Related to our view is a discussion by Otto and Antonsson [Otto and Antonsson,
1991] on the possibilities and drawbacks of the Taguchi method. They offer some exten-
sions (e.g., the inclusion of design constraints). Otto and Antonsson also note that the

Taguchi method is single-objective. The question is raised: how should a trade-off be
handled? But it remains unanswered. We show how trade-off is handled, however;
namely, through compromise DSPs [Mistree et al., 1992] as explained in this section.

If we have an analytical equation characterizing the relationship between the response
and the noise and control factors, then we are able to determine the mean and variance of

the response as functions of the mean and variances of the noise and control factors
through Taylor series expansion (See. 2.2.3). An in-depth discussion about analytical
determination is found in [Bras, 1992] with solutions to concurrent robust design. In
[Lautenschlager et al., 1992; Bras, 1992], solution strategies to model quality into deci-
sion models are shown using a compromise DSP, Taguchi's quality design, and Suh's
[Suh, 1991] design axioms. We want to incorporate the technique of robust design into a
compromise DSP. Robust design involves values for the mean, the standard deviation,
and the signal-to-noise ratio. Now the values for mean and standard deviation are deter-
mined through experiments and not through analytical relationships.

5.2.1 A Compromise DSP Formulation for the Robust Design of the LifeSat

Trajectory

Problem Statement: Assume that we want to design a LifeSat vehicle that has the same
control factors (design variables) as in Section 4.4.1. These control factors are vehicle
mass (VM), initial velocity (IV), and flight path angle (FP). As before (See. 4.4.2), we
want to find the best factor values to make the vehicle land on target, at 33.6 deg geodetic
latitude, and to have the least variation around this target. By representing this in a value
for the signal-to-noise ratio, it is desired that this value becomes 15 dB. It is also desired

Page 96

to obtain a small value for the maximum acceleration. We would like to obtain a value of

50 m/s 2, but the maximum value should not be larger than 140 m/s 2. We loosen the
bounds on the factors (Sec. 4.4.1) to have larger freedom for the design. The lower and

upper bounds on mass are 1400 kg and 1800 kg, respectively. The bounds on velocity
are 9.8 km/s and 10.2 km/s, and the bounds on the flight path angle are -6.2 deg and -5.5

deg. The initial geodetic latitude is kept constant at 44.2 deg.

We want to compare the signal-to-noise ratio on the one side to the mean and standard
deviation on the other side in order to observe the influence on the results. The signal-to-

noise ratio includes all quality characteristics in a single objective, while the mean on tar-
get and small standard deviation involve two objectives.

The first step in a compromise DSP is the word formulation in terms of the keywords in-
troduced in Section 1.3.2. From the problem statement we obtain the following:

Given

J a model for the LifeSat trajectory simulation
a signal-to-noise ratio for geodetic latitude
a mean of geodetic latitude
a standard deviation for geodetic latitude
a mean value for maximum acceleration

a target values for mean, standard deviation, and signal-to-noise ratio

a target value for maximum acceleration
a upper and lower bounds on the design variables
a maximum acceleration limit

Find

Independent system variables
the value for initial velocity IV
the value for vehicle mass VM

the value for flight path angle FP

Satisfy
71 System constraints

the constraint on the maximum acceleration

a System goals
meet target value for mean of geodetic latitude
meet (low) target value of standard deviation
meet (high) target value for signal-to-noise ratio
meet (low) target value for maximum acceleration

a Bounds on system variables
lower and upper bounds on all variables

Minimize

a the deviations from the target values

In order to obtain a mathematical formulation of the preceding problem, we need to de-

rive the equations for the signal-to-noise ratio, mean, standard deviation, and maximum
acceleration with respect to the information given.

To calculate the signal-to-noise ratio of the geodetic latitude, we need to do the simula-
tions with orthogonal arrays and to calculate the Mean Squared Deviation as defined in

Robust Design Using a Compromise DSP Page 97

Equation (2.4) in Section 2.1.2. The signal-to-noise ratio depends on the dispersions of
nine noise factors (Sec. 4.3.1) which are now fixed. Three factors are also our control

factors Fi and, therefore, are independent system variables. We have a total of three fac-
tors; and the signal-to-noise ratio, denoted by SNGL, is defined by

SNGL = fl (El, F2, F3) = 15.0 (5.1)

From experience gained through previous studies, we set our target signal-to-noise ratio
to TSNGL = 15 dB. Equation (5.1) is modeled as a goal in the compromise DSP by

SNGL
+ dl - = 1.0 . (5.2)

15.0

A similar functional relationship exist for the mean and the standard deviation. The mean
for the geodetic latitude is obtained by

MGL = f2 (FI, F2, F3) = 33.6, (5.3)

and is formulated as a goal for the compromise DSP. The target for the mean of the geo-
detic latitude is TMGL = 33.6 deg; hence, we get

MGL

33.6
-- + dE - d_ = 1.0 . (5.4)

The standard deviation is obtained as

SDGL = f3 (F1, F2, F3) = 0.0. (5.5)

Our desired target is a standard deviation of zero, SDGL = 0.0. This goal for the com-
promise DSP is calculated from

SDGL+d_-d 3 = 0.0 . (5.6)

The maximum acceleration MAXA is obtained as

MAXA = f4 (F1, F2, F3) = 50.0. (5.7)

Our desired target is a maximum acceleration of 50 m]s 2. This goal for the compromise
DSP is calculated from

MAXA

50.0
--+d 4-d]=l.O . (5.8)

In order to prevent too much heating of the vehicle, a constraint on the maximum accel-
eration MACC is introduced. This constraint limits the maximum acceleration to a value

of 140 m/s2; therefore, we get

MACC = gl (F1, F2, F3) < 140.0. (5.9)

Page 98

The bounds on the system variables (control factors) are introduced in the problem state-
ment. The preceding leads to the mathematical formulation of the problem as given in

Figure 5.2.

Given

Find

• a model of the LifeSat trajectory;
• signal-to-noise ratio for geodetic latitude;
• mean of geodetic latitude;
• standard deviation for geodetic latitude;
• maximum acceleration;

• target for signal-to-noise ratio;

• target for mean of geodetic latitude;

• target for standard deviation;

• target for max. acceleration;

• upper limit for max. acceleration;
• constants;
• the initial latitude = 44.2 deg;
• the dispersions of noise factors;

• the values for unknown elements:

the value for initial velocity IV
the value for vehicle mass VM

the value for flight path angle FP

SNGL
MGL
SDGL
MAXA

TSNGL = 15.0

TMG L = 33.6

TSDGL = 0.0

TMAXA = 50.0
MACC < 140.0

Satisfy
• the constraint:

MACC/140.0 <1.0

• the signal-to-noise ratio goal:

SNGL / TSNGL + d1- - dl + = 1.0

° the mean on target goal:

MGL / TMG L + d2- - d2 + = 1.0

• the standard deviation goal:

SDGL + d3- - d3+ = 0.0

• the maximum acceleration goal:

MAXA / TMAXA + d4- - d4 + = 1.0

• the bounds:
9.8 < IV < 10.2
1.4 <VM < 1.8
- 6.2 <FP<- 5.5

Minimize

the deviation function;

Z = [fl(d',d +) fk(d',d+)].

(5.9)

(5.2)

(5.4)

(5.6)

(5.8)

Figure 5.2 - Mathematical Formulation of a Compromise DSP for the Robust

Design of the LifeSat Trajectory

Robust Design Using a Compromise DSP Page 99

The formulation in Figure 5.2 has four goals. This means we are interested in the effect

of multiple quality characteristics of the process. The preemptive deviation function Z is
not explicitly specified (yet) in Figure 5.2. In Section 5.3, we specify several deviation
functions, each associated with a different design scenario.

In Figure 5.2, we show normalized goals. The goals are normalized by dividing them
with their associated targets or vice versa in order to obtain values for the deviation vari-
ables ranging between zero and one. The normalization facilitates comparisons between
the goals. The mathematical formulation given in Figure 5.2 is solved using the ALP-
algorithm in DSIDES [Mistree et al., 1992].

Before we explore the behavior of the model, we will discuss another aspect of the design
model. In this section, Equations (5.1) to (5.9) contain functions (fi, gl) which are not
given as explicit algebraic expressions of the control factors Ft, F2, and F3. The nature of
functions is discussed in greater detail in Papalambros [Papalambros and Wilde, 1991].
Not all factor dispersions of the nine noise factors are constant during the calculations;
only six of these nine factors are assumed to be constants. As stated earlier, three of the
noise factors are the system variables or control factors. These are the vehicle mass, the
initial velocity, and the flight path angle. Their dispersions are given in percentage of the
mean; therefore, the dispersions change with the mean values. Our goal is to meet the
target values of mean, standard deviation, signal-to-noise ratio, and maximum accelera-
tion. The calculations of these values are only estimates of the real population. We show
in Sections 4.1 and 4.2 that the estimations based on Monte Carlo and orthogonal array
simulation have only small differences. All the functions fl to f4 are internally evaluated

by the simulation model using orthogonal arrays. The function values are based on statis-
tical calculations using the 27 experiments as before (Chapter 4). Therefore, we have a
nonlinear programming problem which could also be nondeterministic. If we use a
Monte Carlo simulation to evaluate the function values, these values do not change from

run to run if all inputs are the same and the random number generator always starts with
the same seed number. By using different seed numbers the function output would vary,
even for the same input. This will cause difficulties for the solution of the problem.
Using Equation (5.9) as an example, where gl < 140.0, gl evaluated with different seed
numbers may have an estimated value of 139.0 the first time and a value of 141.0 the sec-
ond time for the same input factors. The function will be nonsmooth, and we are not able
to solve the problem with nonlinear programming techniques. If we use orthogonal ar-
rays, all of the experiments are designed in advance and, therefore, the function output is
a deterministic one for a given input. Of course this deterministic value is an estimation,
but the behavior of the function is not influenced by this. Since the input variables are
continuous, the output of functions fl to f4, and g 1 is continuous and differentiable and
can be solved with the ALP-algorithm. Any gradients calculated in this algorithm are
based on the results of the simulation with 27 experiments for a function evaluation.

In the following section, we explore the LifeSat model. This provides information for the
designer and helps to understand the model behavior.

5.2.2 Model Exploration

All nonlinear optimization algorithms are sensitive to the quality of the starting points.
One optimization run can best identify one local minimum. We generate contour plots in
order to obtain a better understanding of the behavior of the LifeSat model. These plots
also serve to validate the results obtained by solving the model using the ALP-algorithm

Page 100

[Mistree et al., 1992]. Each contour plot consists of 200 equally distributed points gen-
erated by the "XPLORE" feature within the DSIDES system. The "XPLORE" feature in
DSIDES facilitates parametric studies of a design space. The time spent to evaluate these
200 points is approximately 10 minutes. Since we use the orthogonal array L27 for the
simulation, a total of 200*27 = 5400 simulations has to be done. In Figure 5.2, we pre-
sent two contour plots of velocity versus flight path angle. The vehicle mass is kept
constant at a value of m = 1560 kg. The contours represent the values for the standard
deviation in the left picture and the signal-to-noise ratio in the right picture.

-5.5 -5.5"

-5.8 _ -5.8"

.5.9-
- _ -6-

-6.11 -6.1-
1

L0.1_Ge°detic Laitude

-6.2
9.8 9.85 9.9 9.95 10 10.05 10.1 10.15 10.2 9.8 9.85 9.9 9.95 10 10.05 10.1 10.15 10.2

Initial Velocity (km/s) Initial Velocity (km/s)

Figure 5.3 - Contour Plots of Initial Velocity vs. Standard Deviation and SN Ratio
for Geodetic Latitude

In the left part of Figure 5.3, the standard deviation is depicted for initial velocity and for
flight path angle. The value of mass is fixed to 1560 kg. We observe a linear relation
between the three parameters (velocity, standard deviation, and flight path angle). For a
speed below 9.9 km/s and a flight path angle below - 6.1 deg, we achieve a very small

standard deviation of approximately cr = 0.16. For high values of speed and flight path

angle, the standard deviation is approximately twice as high as the best value. Although
we want a small variation of the output, we also want to achieve the target which is 33.6
deg for geodetic latitude. The values for the signal-to-noise ratio in the right portion of
Figure 5.3 provide this information. We identify a band of high values for the signal-to-
noise ratio which range from -6.0 deg to - 5.8 deg for the flight path angle and over the

whole range of the velocity. Thus, we conclude that for landing on target we cannot ob-
tain a standard deviation smaller than 0.2 for this particular value of mass. The signal-to-
noise ratio will be larger than 12.0 because this is the value on the border of the band.
The steepness cannot be identified but, from the trend, we suggest a step hill around the
best values. When we have only two design variables--initial velocity and flight path
angle--we have to assure that their mean values are within the band.

For the results shown in Figure 5.4, we keep the initial velocity constant at 9946.5 km/s
and vary the vehicle mass and the flight path angle. We observe the same trends as in

Robust Design Using a Compromise DSP Page 101

Figure 5.3 when the mass is held constant. We identify a smaller range of the standard
deviation, which varies between 0.18 and 0.28. The relative difference between the lower

and the upper value of the mass is larger (25% difference) compared to the relative differ-
ence of the velocity values (4% difference). The sensitivity of the standard deviation and

the signal-to-noise ratio to flight path angle is larger for a particular value of mass when
compared to the velocity.

5t-- 5t-5.6 -5.6

-5.7-5.7

-6.1 -6.1]
-6.2 , , -6.2 , , , , , , ,

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.4 1.45 1.5 1._5 1.6 1.65 1.7 1.75 1.8

Vehicle Mass (1000 kg) Vehicle Mass (1000 kg)

Figure 5.4 - Contour Plots of Vehicle Mass vs. Standard Deviation and SN Ratio for
Geodetic Latitude

Use of the XPLORE feature for design space exploration is extensively demonstrated in
[Smith, 1992]. We obtain important information within a short period of time. From

Figures 5.3 and 5.4 we identify ranges of values for two system variables for good
designs, which will be useful when we are choosing starting points for the optimization.
The major observation we can glean from Figures 5.3 and 5.3 is that several equally good
solutions exist within the identified band; hence, several different designs will satisfy our

goals.

In the following section, we investigate several scenarios in order to solve the compro-
mise DSP as stated in Section 5.2.1. Different scenarios means that we change the order

of priority for the four goals. We use the observations from this section to explain the
results.

5.2.3 Solving the Compromise DSP for Four Scenarios

In Section 5.2.1, we developed the mathematical formulation for the compromise DSP.

We identify three design variable; namely, initial velocity, vehicle mass, and flight path
angle. For solution validation, we use three different starting points. The first starting
point is a point within the ranges for the design variables; the second and third points are
points on the bounds of the variables. By changing the priority levels, we exercise the

Page 102

behavior of the model for different priorities in the goals. Our highest priority is to get

the mean of the geodetic latitude on the target. If this is achieved as much as possible, we
want to minimize the standard deviation. Finally, the maximum acceleration should be

minimized. The signal-to-noise ratio goal is not used because it is represented in the first
two priorities. In the following table (Table 5.1), we present four different scenarios,
each of which is characterized by the priority order of the deviation variables. For the
first scenario according to the concept of lexicographic minimization, the deviation func-
tion is written as

Z(d', d +) = [(d2-+d2+), (d3-+d3+), (d4-+d4+)].

Similarly, the deviation function is written for the remaining scenarios. All scenarios and
corresponding priorities are shown in Table 5.2. In the second scenario, the signal-to-
noise ratio goal has the highest priority, thus presenting our quality characteristic for Ro-

bust Design. Therefore, we assign the acceleration goal to the second priority. In the
third scenario, we changed the priority order of mean and standard deviation goals. Fi-

nally, Scenario 4 represents the acceleration goal with the highest priority. All scenarios
and corresponding priorities are shown in Table 5.1.

Table 5.1 - Scenarios for the Design of the LifeSat Vehicle

Scenario Priority 1
d2-+d2 +

Priority 2

d3-+d3 +

Priority 3
d4-+d4+

2 dl-+dl + d4-+d4 + d2-+d2 +

3 d3-+d3 + d2-+d2 + d4-+d4 +

4 d4-+d4 + d2-+d2 + d3-+d.3 +

As can be seen in Table 5.1, we assign every goal once to the highest priority and, hence,

expect to identify designs which satisfy each of the goals. For each of the scenarios, we
use three different starting points which are given in Table 5.2.

Table 5.2 - Starting Points for Design Variables

Velocity (m/s)
Mass (kg)

Flight Path Angle (deg)

Stading Point1 Stading Point 2 Stading Point 3
9950.0 10,200.0 9800.0
1750.0 1400,0 1800.0

-5.90 -6.20 -5.50

In the following, we explain the results for each starting point and for all four scenarios.
For the first starting point, the results are shown in Table 5.3. We present the final values
for the three design variables and for the four goals. Although we use only three priority
levels, the value of the fourth goal is still calculated. Refer to Table 5.2 to identify the

priority for each presented goal.

Robust Design Using a Compromise DSP Page 103

Table 5.3 - Results with Starting Point 1

Velocity (m/s)
Mass (kg)

Flight Path Angle CdeE)
Mean It (deg)

Std. Deviation G
SN Ratio (dB)

Acceleration (m/s 2)

Scenario I Scenario 2 Scenario 3 Scenario 4
9939.0 9830.0 10,044.1 10,200.0
1758.4 1787.3 1800.0 1800.0
- 5.944 - 5.891 - 6.20 - 5.50
33.600 33.608 34.098 31.209
0.215 0.212 0.193 0.376
13.18 13.29 5.422 -7.684
132.43 131.35 145.21" 94.81

*Constraint violation acceptable.

For scenario 1 as shown in Table 5.3, we find that in the solution the mean value for the

geodetic latitude is exactly on target. The standard deviation is minimized on the second

priority level and a value of ff = 0.215 is obtained. The values for the design variables

have changed slightly compared to the initial values. For the second scenario where the
signal-to-noise ratio has the highest priority, we have larger changes in the design vari-
ables. The speed is decreased and the mass is increased. Although the mean value is not
exactly on target as before, the standard deviation could be decreased and the signal-to-
noise ratio could be increased. These results are driven by the signal-to-noise ratio and

are slightly better. In the third scenario, the standard deviation is minimized with highest

priority. As we can see, this is achieved with a value of t_ = 0.193 but the mean is far

away from the target. Therefore, the signal-to-noise ratio has a small value. If we are
only interested in minimizing the variation of an output this would be a good design. For

the design variables, the velocity has increased and the mass is approaching the lower
bound. The flight path angle is exactly on the lower bound. Compared to the contour
plot in Figure 5.3, we should be able to obtain values for the smallest standard deviation

of approximately _ = 0.18. Since the contour is very flat in this area, the convergence

criteria for termination are satisfied. Hence, tighter stopping criteria would lead to a bet-
ter solution. In scenario 4, the maximum acceleration is minimized. This means that we

want to find a smaller value for the highest acceleration which occurs during the flight.
This goal is achieved within one iteration for all three starting points. Velocity and mass
are going to their upper bound, the flight path angle is going to the lower bound. Even

starting on the opposite bounds leads to this solution. Therefore, the value of 94.8 rn/s 2 is
the smallest value for the maximum acceleration we obtain within the given bounds. This
goal results in bad values for the other goals. When we are far away from the target, the
standard deviation is extremely high; hence, the signal-to-noise ratio is very low. This is
not a design that we really want to have.

In Table 5.4, we present the results for starting point 2. The results for our goals are
approximately the same for all four scenarios as for starting point 1. We identify the
major difference in the values for the mass for the first three scenarios. Because we start-
ed at the lower bound, the final values are still close to it. In scenario 2, the velocity re-
mains on the upper bound and the results are not as good as before. We are fsrther away
from the target and the standard deviation is higher. Scenario 4 has the same results as
for starting point 1.

Page 104

Table 5.4 - Results with Starting Point 2

Velocity (m/s)
Mass (kg)

Flight Path Angle (deg)
Mean lz (deg)

Std. Deviation (r
SN Ratio (dB)

Acceleration (rn/s2)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
9952.1 10,200.0 10,020.0 10,200.0
1584.6 1414.6 1440.0 1800.0
- 5.897 - 5.984 - 6.13 - 5.50
33.604 33.635 34.024 31.209
0.217 0.223 0.204 0.376
13.081 12.76 6.512 -7.684
131.11 133.486 142.410" 94.81

* Constraint violation acceptable.

In Table 5.5, the results for the third starting point are presented. As for starting point 1,
we obtain good results for our goals but different values for the design variables. Al-
though the mass in scenario 3 is on the upper bound, we have a low value for the standard
deviation. According to the contour plots in Figure 5.3 and the stopping criteria, this re-
sult is a solution since the velocity is on its lower bound.

Table 5.5 - Results with Starting Point 3

Velocity (m/s)
Mass (kg)

Flight Path Angle (dog)
Mean # (deg)

Std. Deviation (r
SN Ratio (dB)

Acceleration (m/s 2)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
9981.3 9800.0 9800.0 10,200.0
1800.0 1770.0 1800.0 1800.0
-5.981 -5.856 -6.062 -5.50
33.600 33.617 34.097 31.209
0.215 0.212 0.190 0.376
13.18 13.26 5.457 - 7.684
133.38 130.58 141.2" 94.81

* Constraint violation acceptable

Our conclusions for the different scenarios and starting points are as follows:

The two goals of getting the mean on target and minimizing the standard
deviation in this order result in approximately the same solutions for the
goals as using the single goal of maximizing the signal-to-noise ratio.

No unique solution exists. For different starting points we obtain equally
good results for the goals, but the values for the design variables are diffe-
rent and, hence, we have different designs.

The order of priority for the quality aspects of mean and standard devia-
tion has to be like that in scenario 1 to obtain a good design solution. As
demonstrated in scenario 3, the opposite order results in a bad design
which is reflected in the value of the signal-to-noise ratio.

In the following, we show two figures representing the values of the deviation func-
tion for the first three priorities (Fig. 5.5) and the values for the design variables (Fig.

Robust Design Using a Compromise DSP Page 105

5.6) for each iteration. This is done for three different starting points and for scenario
1 as shown in Table 5.1. Priority levels 1 and 2 represent our quality characteristics
in scenario 1. The highest priority is to get the mean of the geodetic latitude on
target, the second priority is the standard deviation goal, and the third priority is the

acceleration goal.

0.04

0.035

0.03

0.025
0.02

0.015

0.01

O.OO5

0

----o--- Starting Point l |

- Starting Point 2 IStarting Point 3

I 2 3 4 S

Iteration

0.28

0.27

0.26

0.25

0.24

_ 0.23

0.22

0.21

0.2

Starting Point 3

8 o

1 2 3 4 5

Iteration

t

1.9

1.0

1.7

1.6

1.5

1.4

1.3

1.2

I.l

/ _ Starting Point 2

+ Starting Point 3

1 2 3 4 5

Iteration

Figure 5.5 - Convergence of Deviation Function for Three Priority Levels

From Figure 5.5, we identify convergence for each of the priority levels to approximately
the same solution for all three starting points. The number of iterations for starting points

2 and 3 is four, and for starting point 1 is five. Priority level 1 goes to zero; that means
we are on target. On priority level 2, by minimizing the standard deviation we obtain a
value around 0.215 (Tables 5,4, 5.5, and 5.6). The deviation function for the acceleration

goal (priority level 3) has final values near 1.65; i.e., a value around 133 m/s 2 for accel-
eration. Convergence is achieved within four to five iterations; but the first iteration,
which is driven by priority level 1, almost leads to the final solution.

As indicated earlier in this section, the design variables do not have the same solution
values for different starting points. In the pictures of Figure 5.6, the complete range for
the variables is used as scale.

Page 106

10.57_--

,0,5 [_o_ s o PointLI_X I ------*--- StartlngPoint 2

10.1 ! _ [_ Starting Point 3

i%1
9.95 //

9.85

9.8

1 2 3 4 5

Iteration

f

,so0

1750

1700

1650

1600

1550

1_0

14_

1400

Jq :: :: =

__ _tarting Point 1 [
Starting Point 2

Starting Point 3

I 2 3 4 5

Iteration

.5.6 ---e-- Starling Point 1

_ -5.8

i -5.9
4

4.,

-6.2

0 1 52 3 4

Iteration

Figure 5.6 - Convergence of Design Variables for Three Different Starting Points

The initial velocity has different solution values but in the same area. The vehicle mass
converges to three different final values covering a large range within the bounds. For
starting point 3 the mass remains constant on the initial value. Only velocity and flight
path angle vary in this case, but we still obtain a good design. In Table 5.6, we represent
these three different but equivalent designs, which are reflected in a similar value for the
signal-to-noise ratio. Values from 13.08 to 13.18 can be assumed to be quite similar.

Table 5.6 - Comparison Of Equivalent Designs

Design 1 Design 2 Design 3

Velocity (m/s) 9939.0 9952.1 9981.3
Mass (kg) 1758.4 1584.6 1800.0

Flight Path Angle (deg) - 5.944 - 5.897 - 5.981

Signal-to-Noise Ratio 13.18 13.08 13.18

The depicted figures represent only scenario 1. For all other scenarios we obtain approx-
imately the same results in the sense that we need only a few iterations for convergence
but obtain different designs for different starting points. This is exactly what we expected
from the contour plots, where we have identified a band with equally high values for the

Robust Design Using a Compromise DSP Page 107

signal-to-noise ratio. We could obtain these values with many different combinations of
the design variables.

5.3 WHAT HAS BEEN PRESENTED AND WHAT IS NEXT?

In this chapter, we introduce the compromise DSP as a tool to support design decisions in
the early stages of design. We present the word formulation and derive the mathematical
formulation of a compromise DSP for the LifeSat vehicle. Our goal is to find dimensions

of the design variables which give a robust design of the vehicle on highest priority. We
compare the signal-to-noise ratio goal with a two goal formulation of mean on target goal
and standard deviation goal. We study the model behavior by minimizing the standard
deviation and by minimizing the maximum acceleration. Before solving the problem, we

explore the design space for the standard deviation and the signal-to-noise ratio. Ob-
servations made from the contour plots are helpful to explain and validate results. Design
space exploration is also useful when we deal with highly nonlinear problems. We draw
the following conclusions from this study using the compromise DSP:

The use of the "XPLORE" feature in DSIDES is a helpful tool to identify the
behavior of the design space. Many conclusions can be made from contour
plots which are obtained in a small amount of time (10 to 15 minutes for 200
points).

The LifeSat vehicle model has multiple solutions for the goals. We identify
some of these solution within a few iterations. The time spent is approximate-
ly 2 to 3 minutes, and the obtained solution is satisficing with respect to goals.

For robust design goals, the use of the signal-to-noise ratio is as good as using
two goals for mean and standard deviation. Compared to Section 4.4.2, we
are not dependent on factor levels but find the best values for the design vari-
ables from a continuous range.

For future applications, more design constraints could be introduced into the
model to make it more realistic. By having multiple goals and constraints, the
compromise DSP is a capable tool to support required design decisions.

In the last chapter, we review the presented work, critically evaluate it, and draw conclu-
sions. All questions posed in Chapter 1 are answered, and a discussion of future research
areas is presented.

Page 108

CI-IAI'TER 6

CLOSURE

The principal goal of this work is identified in Chapter 1. We review this goal along with
the questions posed in Section 1.4. The current work, as presented in this report, is criti-
cally evaluated to see if these questions are answered. We address advantages and limi-
tations of the proposed approach using orthogonal arrays for simulation purposes. The
discussion of areas for future work is followed by closing remarks.

Closure Page 109

6.1 REVIEW OF THE GOAL FOR THE REPORT, RELATED QUESTIONS,
AND CONCLUSIONS

We identify the principal goal of this work along with the focus to develop and imple-
ment applications of Taguchi's quality engineering in Section 1.4. Several questions
worthy of investigation are posed in Section 1.4 that concern the capability of the applica-
tion and confidence in the results. The presented work is critically evaluated to see if the

questions are answered in this report.

Is it possible to reduce through substitution a large number of Monte Carlo

simulations by Orthogonal Array experiments ?

In Chapter 1, we introduce the need for simulation reduction by substitution of
Monte Carlo simulation with a more efficient technique. Orthogonal arrays bthat
are discussed in Section 2.3 are identified to fulfill this task. Aspects of how to

use orthogonal arrays for simulation are described in Section 2.4. Based on sim-
ulation results obtained in Section 2.4.2 and Chapter 4, we answer the question

with a clear yes.

-i What is the statistical confutence level that the results from Monte Carlo simu-

lations and orthogonal array based simulations are equal?

Statistical confidence is established in Section 4.2.3. Based on statistical tests, we

identify that results obtained for both simulation methods are equal in 97.5% of
the cases. Furthermore, we establish confidence through comparison of statistics

parameters, such as mean and standard deviation in Sections 4.1 and 4.2. We
admit that many additional tests are available to obtain confidence in the results,
but this is beyond the scope of this work.

71 How can we identify factor contributions to variation in system performance .9

The method of evaluating factor effects is analysis of variance (ANOVA) as
explained in Section 2.5. The use of ANOVA provides a measure for the factor
contributions and a level of confidence for these contributions. ANOVA is ap-

plied in Section 4.3.2. Through comparison with results from Monte Carlo simu-
lations in Section 4.3.1, we validate the use of ANOVA to obtain information

about factor contributions while varying all factors simultaneously. We identify
the contributions of environmental, initial state, and vehicle parameter dispersions
to the variation of the geodetic latitude. In Section 4.4.2, we validate results about
the sensitivity of the geodetic latitude to factor levels with ANOVA.

--1 Are we able to improve the quality of a design by using the signal-to-noise
ratio?

The signal-to-noise ratio is being introduced in Section 2.1. Quality characteris-
tics such as meeting the target and making the product insensitive to noise are em-

ployed in a single number. In Section 4.4.2, we discuss in detail how the signal-

Page 110

to-noise ratio is used to obtain a robust design. Only if both quality characteristics
are satisfied is the value for the signal-to-noise ratio sufficiently high. In Chapter
5, the signal-to-noise ratio is one of the main goals in a compromise DSP. In this
chapter, we use the signal-to-noise ratio as a continuous measure for quality com-
pared to average quality in Section 4.4.2 with traditional robust design. From all
results (Chapters 4 and 5), we clearly obtain an indication for improved quality of

designs.

Is it possible to predict the factor levels for best system performance by using

robust design ?

This question is being answered in Section 4.4.2. By using only nine experiments
along with the L9 orthogonal array, we show with a simple example how to calcu-
late average system performance for each factor on each level. From average
performance we identify the factor levels which we believe will result in better
system performance. The verification experiment has to be performed to verify
the proposed factor levels. This question is closely related to the previous ques-
tion and, since we are able to predict the factor levels, the next step is again the
employment of the compromise DSP as shown in Chapter 5.

What are the advantages and limitations of the presented approach ?

The new philosophy involved in this approach of employing Taguchi's quality
engineering techniques is the use of orthogonal arrays to simulate the effects of
noise factors. Without having an inner array to evaluate control factor settings,
we evaluate one particular design and only the effects of noise factors. This par-
ticular design for the LifeSat vehicle is evaluated by simulating the trajectory and
is characterized by the variation in landing position and performance parameters.
We show that using information obtained from 27 simulations based on orthog-
onal arrays requires 40 times less simulations than Monte Carlo simulation tech-
nique and maintains accuracy. We get a feeling for the time savings if we look at
the robust design formulation of the trajectory using the compromise DSP. In the
following, we present the average time spent to simulate the trajectory:

2 to 3 seconds for 27 simulations of the trajectory.

[] 3 to 5 minutes to perform complete robust design study with three to
four system variables using the compromise DSP.

10 to 15 minutes for design space exploration (as shown in Section
5.2) to detect best candidate starting points for optimization and infor-
mation about the design space.

If we do the calculations when the trajectory is simulated with Monte Carlo sim-
ulation and 1106 (Chapter 1) samples, the same robust design study would take

approximately 3.5 hours as compared with 3 to 5 minutes. The estimated time
savings is approximately 97.5%.

One limitation of our approach at this stage is the dependency of factor levels on
the observed system. In Section 4.2.2, we show how the estimated values for the

Closure Page Ill

standard deviations of all landing position and performance parameters change

with the t_-levels of the factors. Another limitation involves the determination of

factor levels. If factors are dependent on each other, we have to modify columns

of the standard orthogonal arrays in order to represent these dependencies. Recall
the dependency of angle of attack and drag coefficient as explained in Section 3.2.
Only because of small changes in the angle of attack are we able to assign three
levels to the drag coefficients. For larger changes, a total of nine levels for the
angle of attack is required: three for each level of the angle of attack.

We observe that all of the questions posed in Chapter I are answered through the current
work. Our conclusion is that using orthogonal arrays for the simulation is a valuable and
time saving method which obtains more accurate results than the Monte Carlo simulation.
The performance of a design can be evaluated within a short period of time and can be
improved by using design models; e.g., a compromise DSP. By using the signal-to-noise
ratio, we have a single number indicator for the quality of the design. The analysis of re-
sults can be done easily with ANOVA.

We hope that we have opened another domain of application for Taguchi's quality engi-
neering and for what is involved with the use of orthogonal arrays. A domain dependent
insight and understanding into the new philosophy are gained while doing this work.
Some possible areas of future work are outlined in the next section.

6.2 FUTURE WORK

This work covers only a small part of what is possible that is being investigated. A large
body of future work is identified. In the near future, the focus will be on issues related to
the current LifeSat model. For long-term research, the focus is more general. The fol-
lowing issues need to be addressed:

Orthogonal Arrays. We have focused only on three-level orthogonal arrays. Do
we obtain results with a higher confidence when we use four- or five-level arrays?
The question to be posed is the following: Are simulations of noise factors suffi-
cient with the use of only three levels? But what is our choice for the factor levels
with more levels? Can we weigh the output proportionate to the probability of
input parameter values? Should we use the same levels (three) but higher order
arrays L27 --> L 81 to represent more factor combinations? These are issues that
concern orthogonal arrays and factor levels.

Model Refinement. In the work presented here, we have not focused on meeting
the available impact area, although we met the target and minimized the variation
around this target. Especially, tolerances on initial state parameters and the atmo-
spheric density have to be adjusted. Not all results correspond to the documented
ones [McCleary, 1991]. Therefore, the model can be refined.

Implementation of Axiomatic Design. A connection among Taguchi's quality de-
sign, the compromise DSP, and Suh's design axioms [Suh, 1991] has already been
shown in [Lautenschlager et al., 1992; Bras, 1992]. When the signal-to-noise

ratio and variance are calculated analytically, Bras [Bras, 1992] shows how we
can obtain a robust design involving parameter design and tolerance design. For

Page 112

simulation models like the LifeSat model, this combination of several design tools

or design models is desirable.

Industrial Implementation. The work has to be applied in design practice. Fur-

ther comparative case studies---e.g., with nonlinear models--are essential to vali-
date this approach. A computer environment needs to be developed in which we
can select suitable orthogonal arrays. Existing capabilities of DSIDES to support
human design decisions need to be used extensively in order to obtain solutions to
real-life problems when a trade-off between multiple objectives has to be
included.

6.3 CLOSING REMARKS

Finally, the main emphasis of research and development has been to develop tools that
can be used to find answers to a set of specifications and requirements. We suggest that
in the future we should foster the recognition and employment of quality engineering
tools for the whole life-cycle of a product.

Closure Page 113

REFERENCES

Addelman, S. (1962). "Orthogonal Main Effect Plans for Assymetrical Factorial

Experiments" Technometrics, Vol. 4, pp. 21-46.

Bascaran, E., F. Mistree and R.B. Bannerot (1987). "Compromise: An Effective

Approach for Solving Multi-objective Thermal Design Problems," Engineering

Optimization, Vol. 12, No. 3, pp. 175-189.

Baumeister, T. (1986). Marks' Standard Handbook for Mechanical Engineers, McGraw
Hill, New York.

Bogner, A. (1989). Statistical Estimation for Nonlinear Systems. Charles Stark Draper
Laboratory.

Bose, R.C. and K.A. Bush (1952). "Orthogonal Arrays of Strength Two and Three,"

Annals of Mathematical Statistics, Vol. 23, pp. 508-524.

Bras, B.A. (1992). Foundations for Designing Decision-Based Design Processes, Ph.D.

Dissertation, University of Houston, Houston, TX.

Bras, B.A. and F. Mistree (1991). "Designing Design Processes in Decision-Based
Concurrent Engineering," Proceedings SAE Aerotech '91, SAE Publication SP-886,

Paper No. 912209, Long Beach, CA, SAE International, pp. 15-36.

Bras, B.A. (1992) Foundations for Designing Decision-Based Design Processes, Ph.D.
Dissertation, University of Houston, Houston, TX.

Bronstein, I.N. and K.A. Semendjajew (1987). Taschenbuch der Mathematik, Vetlag
Hard Deutsch, Frankfurt/Main.

Casella, G. and R.L. Betget (1990). Statistical Inference, Wadsworth & Brooks/Cole
Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software,
Pacific Grove, California.

Dey, A. (1985). Orthogonal Fractional Factorial Design, Halsted Press, New York.

Donaghey, C.E. (1989). Digital Simulation. University of Houston, Industrial

Engineering Dept.

Dunn, O.J. and V.A. Clark (1987). Applied Statistics: Analysis of Variance and

Regression, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons,
NY.

Ignizio, J.P. (1985). Introduction to Linear Goal Programming, Quantitative
Applications in the Social Sciences, J.L. Sullivan and R.G. Niemi Ed., Sage University
Papers, Beverly Hills, CA.

Karandikar, H. and F. Mistree (1991). "Designing Composite Material Pressure Vessel

for Manufacture: A Case Study for Concurrent Engineering," Vol. 18, No. 4, 1991, pp.

Page 114

235-262.

Kempthorne, O. (1979). The Design and Analysis of Experiments, Robert E. Krieger
Publishing Co., NY.

Lautenschlager, U., S.O. Erikstad, B. Bras and F. Mistree (1992). "Quality Design
Decision Models," Fourth National Symposium on Concurrent Engineering, Washington,

DC, pp. 423-441.

Marks, L.S., (1951) Mechanical Engineers' Handbook, Fifth Edition, McGraw-Hill Book

Company, Inc., NY.

Masuyama, M. (1957). "On Different Sets for Constructing Orthogonal Arrays of Index

Two and of Strength Two," Rep. Statist. Appl. Res. Un. Jap. Sci. Eng., No. 32, pp. 27-34.

McCleary (1991). Entry Monte Carlo Analysis Capability Using SORT. McDonnell
Douglas Space Systems Co.

Mistree, F., O.F. Hughes and B.A. Bras (1992). "The Compromise Decision Support

Problem and the Adaptive Linear Programming Algorithm," in Structural Optimization:
Status and Promise, M.P. Kamat Ed., AIAA, Washington, D.C.

Mistree, F., O.F. Hughes and H.B. Phuoc (1981). "An Optimization Method for the

Design of Large, Highly Constrained, Complex Systems," Engineering Optimization,
Vol. 5, No. 3, pp. 141-144.

Otto, K.N. and E.K. Antonsson (1991). "Extensions to the Taguchi Method of Product

Design", Third International Conference on Design Theory and Methodology, L.A.
Stauffer Ed., Miami, Florida, American Society of Mechanical Engineers, pp. 21-30.

Papalambros, P. and D. Wilde (1988). Principles of Optimal Design. Cambridge
University Press, Cambridge.

Phadke, M.S. (1989). Quality Engineering using Robust Design, Prentice Hall,

Englewood Cliffs, NJ.

Plackett, R.L. and J.P. Burman "The Design of Optimal Multifactorial Experiments,"

Biometrika, Vol. 33, pp. 305-325.

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, (1988) Numerical

Recipes in C, Cambridge University Press.

Rice, J.R. (1983). "Numerical Methods. Software and Analysis." McGraw-Hill, NY.

Ross, P.J. (1988). Taguchi Techniques for Quality Engineering. McGraw Hill, NY.

Roy, R. (1990). A Primer on the Taguchi Method, Competitive Manufacturing Series,
Van Nostrand Reinhold, NY.

References Page 115

Seiden, E. (1954). "On the Problem of Constructing Orthogonal Arrays," Annals of

Mathematical Statistics. Vol. 25, pp. 151 - 156.

Smith, W.F. (1992). The Modeling and Exploration of Ship Systems in the early Stages of

Decision-Based Design, Ph.D. Dissertation, University of Houston, Houston, TX.

Sokal, R. and F.J. Rohlf (1981). Biometrv, W.H. Freeman & Co., San Francisco, CA.

Suh, N.P. (1990). The Principles of Design, Oxford University Press, NY.

Taguchi, G. (1987). System of Experimental Design, Kraus International Publications,
NY.

Taguchi, G., E.AI Elsayed and T. Hsiang (1989). Quality Engineering in Production

Systems, McGraw-Hill, New York, NY.

Tigges, M.A. (1992). Life Sat Monte Carlo Dispersions and Simple Functional Relations.
NASA JSC, Informal Report.

Ullman, D.G. (1992). The Mechanical Design Process, McGraw-Hill, New York.

Zhou, Q-J., J.K. Allen and F. Mistree (1992) "Decisions Under Uncertainty: The Fuzzy
Compromise Decision Support Problem", Engineering, Optimization, Vol. 20, pp. 21-43.

Page 116

Appendix A

Flightsimulation Program Source Code

The simulation routines for the deorbiting LifeSat vehicle are included in this appendix.
The flightsimulation consists of the main program (spaceflight) and several subroutines in
FORTRAN. In a data-file (flightsim.dat), required flight data have to be provided by the
user. The user can choose between flightsimulation using Monte Carlo simulation or
using orthogonal array based simulation. The program creates output-files for results
about position, performance parameters, and statistics. These results can be further ana-
lyzed by ANOVA programs, as provided in Appendix C.

Appendix A: Flightsimulation Program Source Code Page A1

C
C
C

C

NAME: SPACEFLIGHT

PURPOSE: LIFE SAT TRAJECTORY SIMULATION WITH DISPERSED PARAMETERS

PROGRAMMER: UWE LAUTENSCHLAGER

DATE: 2 MAY, 1992

LOCAL VARIABLES:

CHARACTER* 1 TAB
INTEGER ZAEHL, RUNS, NDESV, IFLAG, NSKIP, COL(40), FLIGHTTIME
INTEGER*4 IDUM

REAL ACCMAX, ACCX, ACCY, ACCZ, AREF(3),
& AOT, AOTTOL, AOTDIS,
& CD(3), CDTOL(3), CDDIS(3),
& DENSINIT, DENS, DENSTOL, DENSDIS, DELTAT, DYNMAX,
& MASS, MASSTOL, MASSDIS,

& MEAN(5), VAR(5), STDEV(5),
& LRX, LRY, LRZ, LNX, LNY, LNZ,
& DESPX, DESPY, DESPZ, DEPOSX, DEPOSY, DEPOSZ,
& RADINIT, RADNEW, RADIUS, RANGE(2), DELRANGE(2), ROTAT,
& HS, HINIT, PI, EXPONENT,
& MUE, TETNEW, PHINEW, FLIPA, AZIMU, LONGIT, LATIT,
& LONGITOL, LATITOL, RADITOL, SPEEDTOL, AZIMUTOL, FLIPATOL,
& LONGIDIS, LATIDIS, RADIS, SPEEDIS,AZIMUDIS, FLIPADIS,
& POSXDIS, POSY'DIS, POSZDIS, SPEED, SPEEDINIT,
& VELX, VELY, VELZ,
& SPEEDX, SPEEDY, SPEEDZ,
& OA(81,40), LOWER(40), MIDDLE(40), UPPER(40),
& XDUM

INTEGER NUOUT, NUINP

COMMON/DISTRIB/IDUM
COMMON/PERFORM/ACCMAX, DYNMAX

C******************:_*********_*_***************************** __

C
NUINP = 10
NUOUT = 13

TAB = CHAR(9)

IDUM= 1791

C

C

C
OPEN(UNIT=NUINP, FILE = 'flightsim.dat',STATUS='OLD')

C

C ...

C

Page A2

C Skip first 5 lines of header information
C

DO 10 J = 1,5
READ (NUINP,*)

10 CONTINUE
C
C ...

C
C
C

C

Read flags and parameters from data file

READ(NUINP,*) IFLAG
READ(NUINP,*) NDESV
READ(NUINP,*) NSKIP, RUNS
READ(NUINP,*) SPEEDINIT
READfNUINP,*) MASS
READ(NUINP,*) FLIPA, AZIMU

READ(NUINP,*) LONGIT, LATIT

DO 11 J= 1,6
READ (NUINP,*)

11 CONTINUE
C

READ(NUINP,*) LONGITOL, COL(l)
READ(NUINP,*) LATITOL, COL(2)
READ(NUINP,*) RADITOL, COL(3)
READ(NUINP,*) MASSTOL, COL(4)
READ(NUINP,*) DENSTOL, COL(5)

READ(NUINP,*) CDTOL(1), COL(6)
READ(NUINP,*) FLIPATOL, COL(7)
READ(NUINP,*) AZIMUTOL, COL(8)
READ(NUINP,*) SPEEDTOL, COL(9)

C

C
CLOSE(NUINP)

IF (IFLAG.EQ.1) THEN
IF (NDESV.LE.4) THEN

RUNS = 10

ELSE IF (NDESV.LE. 13.AND.NDESV.GT.4) THEN
RUNS = 28

ELSE IF (NDESV.LE.40.AND.NDESV.GT. 13) THEN
RUNS = 82

END IF
END IF

C

IF (IFLAG.EQ.0) THEN

OPEN (UNIT = 1, FILE = 'ranstat.out', STATUS = ZINKNOWN')
OPEN (UNIT = 2, FILE = 'ranpoint.out', STATUS = 'UNKNOWN')

ELSE IF (IFLAG.EQ. 1) THEN
OPEN (UNIT = l, FILE = 'ortstat.out', STATUS = 'UNKNOWN')
OPEN (UNIT = 2, FILE = 'ortpoint.out', STATUS = ZINKNOWN')

END IF

OPEN (UNIT = 3, FILE = 'altitude.out', STATUS = 'UNKNOWN')
C

DO 20 J = 1, NSKIP

XDUM = SRAN(IDUM)

Appendix A: Flightsimulation Program Source Code Page A3

C
C INITIALIZATION OF PARAMETERS AND VARIABLES

C
PI = 3.1415927

C
C TIME STEPS IN SECONDS FOR INTEGRATION

C
DELTAT = 1.0

C
C 1. GRAVITATIONAL PARAMETERS

C
RADINIT = 6370000.0
RADNEW = RADINIT + 121920.0
MUE = 9.81 *RADINIT**2

C
C 2. ATMOSPHERE

C
DENSINIT = 1.2
HS = 8620.7
HINIT = RADINIT

C
C 3. VEHICLE
C
C MASS = 1560.357

AREF(1) = 3.3
AREF(2) = 9.0898
AREF(3) = 113.469
AOT = 0.0
CL = 0.0
ROTAT = 0.0

C
FLIPA = FLIPA*PI/180.0
AZIMU = AZIMU*PI/180.0

C

C DEFINE TOLERANCES OR 1-SIGMA LEVELS FOR ALL PARAMETERS
C
C 1. TOLERANCE IN MASS EQUALS 5%, UNIFORM
C

MASSTOL = MASSTOL*MASS
C
C 2. 3-SIGMA DISPERSION IN DENSITY EQUALS 30%, NORMAL
C

DENSTOL = DENSTOL* DENSINIT/3.0

C
C 3. TOLERANCE IN ANGLE OF ATTACK EQUALS 5%, UNIFORM

C
AOTTOL = 5.0

C
C 4. 3-SIGMA DISPERSION OF VEHICLE Cd EQUALS 5%, BUT DEPENDS ON
C THE MEAN AT THE GIVEN ANGLE OF ATTACK; CHUTE COEFFICIENTS
C MEANS ARE CONSTANT, NORMAL

C

Page A4

C CDTOL(2) = 0.0275/3.0
C CDTOL(3) = 0.04/3.0
C

C 5.3-SIGMA DISPERSIONS OF REF. AREA OF CHUTES EQUAL 1%, NORMAL
C

C AREF'rOL(2) = 0.4418/3.0
C AREFTOL(3) = 5.515/3.0
C

C 6. THE THE INITIAL STATE IS VARIED BY 5% OF THE INITIAL VALUES, NORMAL
C

LONGITOL = LONGITOL
LATITOL = LATITOL
RADITOL = RADITOL

C

C 7.3-SIGMA DISPERSIONS OF SPEED DIRECTIONS EQUAL 2% OF ANGLES, NORMAL
C

FLIPATOL = FLIPATOL*FLIPA/3.0
AZIMUTOL = AZIMUTOL*AZIMU/3.0
SPEEDTOL = SPEEDTOL*SPEEDINIT/3.0

C

C IF IFLAG = 1, WHICH MEANS ORTHOGONAL ARRAYS ARE APPLIED, WE
C DETERMINE LOWER, MIDDLE, AND UPPER LEVEL FOR EACH DISPERSED VARIABLE
C FOR UNIFORM: LOWER = MEAN - TOL., MIDDLE = MEAN, UPPER = MEAN + TOL.
C FOR NORMAL: LOWER = MEAN - SQRT(1.5)*SIGMA, MIDDLE = MEAN, UPPER
C

C
C
C

C

C

C

C

C

C

C

C
C
C

C
C

C

IF (IFLAG.EQ. I)THEN

1. DEFINE INITIAL POSITIONS; NORMALLY

RADIUS = RADNEW

CALL LEVELSNOR (LONGIT, LONGITOL, LOWER(COL(1)),
& MIDDLE (COL(1)), UPPER(COL(I)))
CALL LEVELSNOR CLATIT, LATITOL, LOWER(COL(2)),
& MIDDLE (COL(2)), UPPER(COL(2)))
CALL LEVELSNOR (RADIUS, RADITOL, LOWER(COL(3)),
& MIDDLE (COL(3)), UPPER(COL(3)))

2. DEFINE MASS; UNIFORMALLY

CALL LEVELSUNI (MASS, MASSTOL, LOWER(COL(4)),
& MIDDLE(COL(4)), UPPER(COL(4)))

3. DEFINE DENSITY; NORMALLY

CALL LEVELSNOR (DENSINIT, DENSTOL, LOWER(COL(5)),
& MIDDLE(COL(5)), UPPER(COL(5)))

4. DEFINE CD FOR ANGLE OF ATTACK; UNIFORMALLY

CD(1) = (0.66512 + 0.67068)/2.0
CDTOL(1) = CDTOL(1)*CD(1)/3.0

5. DEFINE DRAG-COEFFICIENT, NORMALLY

CALL LEVELSNOR (CD(1), CDTOL(1), LOWER(COL(6)),

Appendix A: Flightsimulation Program Source Code Page A5

C
C
C

& MIDDLE(COL(6)), UPPER(COL(6)))

6. DEFINE INITIAL SPEED, NORMALLY

CALL LEVELSNOR (FLIPA, FLIPATOL, LOWER(COL(7)),

& MIDDLE(COL(7)), UPPER(COL(7)))
CALL LEVELSNOR (AZIMU, AZIMUTOL, LOWER(COL(8)),

& MIDDLE(COL(8)), UPPER(COL(8)))
CALL LEVELSNOR (SPEEDINIT, SPEEDTOL, LOWER(COL(9)),

& MIDDLE(COL(9)), UPPER(COL(9)))
C

C

C
END IF

C
C MAIN LOOP FOR ALL SIMULATIONS
C

ZAEHL = 0

C
DO WHILE (ZAEHL.LE.(RUNS- 1))

C
ZAEHL = ZAEHL + 1

C
RADIUS = RADNEW

C
FLIGHTTIME = 0

C
ACCMAX = 0.0
DYNMAX = 0.0

C
LRX = 0.0
LRY = 0.0
LRZ = 0.0
LNX = 0.0
LNY = 0.0
LNZ = 0.0

C

IF ((IFLAG.EQ. 1).AND. (ZAEHL.GT. 1)) THEN
CALL POSIT (OA(ZAEHL- 1,COL(1)), OA(ZAEHL- 1,COL(2)),

& OA(ZAEHL- 1 ,COL(3)), POSXDIS, POSYDIS, POSZDIS)
MASSDIS = OA(ZAEHL- 1,COL(4))
DENSDIS = OA(ZAEHL- I,COL(5))
CDDIS(1) = OA(ZAEHL-1,COL(6))

CALL VELOC (OA(ZAEHL- 1 ,COL(1)), OA(ZAEHL- 1,COL(2)),
& OA(ZAEHL- 1,COL(7)), OA(ZAEHL- 1 ,COL(8)), OA(ZAEHL- 1,COL(9)),
& SPEEDX, SPEEDY, SPEEDZ)

AOTDIS = AOT
C

ELSE IF (IFLAG.EQ.0) THEN
C

C
C 1. DISPERSE INITIAL POSITIONS NORMALLY
C

CALL DISPERSNOR (LONGIT, LONGITOL, LONGIDIS)
CALL DISPERSNOR (LATIT, LATITOL, LATIDIS)

CALL ORTARRAY (NDESV, LOWER, MIDDLE, UPPER, OA)

Page A6

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C
C

CALL DISPERSNOR (RADIUS, RADITOL, RADIS)

CALL POSIT (LONGIDIS, LATIDIS, RADIS, POSX-DIS, POSYDIS, POSZDIS)

2. DISPERSE MASS UNIFORMALLY

CALL DISPERSUNI (MASS, MASSTOL, MASSDIS)

3. DISPERSE DENSITY NORMALLY

CALL DISPERSNOR (DENSINIT, DENSTOL, DENSDIS)

4. DISPERSE ANGLE OF ATTACK UNIFORMALLY

CALL DISPERSUNI (AOT, AOTTOL, AOTDIS)

5. MODEL VEHICLE CD LINEAR TO ANGLE OF ATTACK
DISPERSE VEHICLE CD RELATED TO ANGLE OF ATTACK

IF (AOTDIS.GE.AOT) THEN
CD(1) = 0.66512 + 0.001112*AOTDIS

ELSE

CD(1) = 0.67068 - 0.001112"(5.0 - AOTDIS)
END IF

CDTOL (1)= 0.05"CD(1)/3.0

CALL DISPERSNOR (CD(I), CDTOL (1), CDDIS(1))

6. DISPERSE INITIAL SPEED NORMALLY

CALL DISPERSNOR (FLIPA, FLIPATOL, FLIPADIS)
CALL DISPERSNOR (AZIMU, AZIMUTOL, AZIMUDIS)
CALL DISPERSNOR (SPEEDINIT, SPEEDTOL, SPEEDIS)

CALL VELOC (LONGIDIS, LATIDIS, FLIPADIS, AZIMUDIS, SPEEDIS,
& SPEEDX, SPEEDY, SPEEDZ)

END IF

MAKE A DRY RUN FOR THE MEAN AT FIRST

IF (ZAEHL.EQ.1) THEN

CALL POSIT (LONGIT, LATIT, RADNEW, POSXDIS, POSYDIS, POSZDIS)
CALL VELOC (LONGIT, LATIT, FLIPA, AZIMU, SPEEDINIT,
& SPEEDX, SPEEDY, SPEEDZ)

DENSDIS = DENSINIT
MASSDIS = MASS

CDDIS(1) = (0.66512 + 0.67068)/2.0
AOTDIS = AOT

END IF

VELX = SPEEDX
VELY = SPEEDY
VELZ = SPEEDZ

CALCULATE INITIAL POSITION STATE PARAMETERS IN POLAR COORDINATES

Appendix A: Flightsimulation Program Source Code Page A 7

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CALL POLAR (POSXDIS, POSYDIS, POSZDIS, RADIUS, TETNEW, PHINEW)

MAIN LOOP FOR ITERATIONS AND ONE SIMULATION

DO WHILE (RADIUS.GE.RADINIT)

FLIGHTTIME = FLIGHTTIME + 1

CALL DIRECTION

& (SPEEDX, SPEEDY, SPEEDZ, LRX, LRY, LRZ, LNX, LNY, LNZ)

CALCULATION OF DENSITY

EXPONENT = (HINIT - RADIUS)/HS
DENS = DENSDIS*EXP(EXPONENT)

SPEED = SQRT(SPEEDX**2 + SPEEDY**2 + SPEEDZ**2)

CALL FORCES
& (RADIUS, DENS, SPEED, MUE, MASSDIS, LRX, LRY, LRZ,
& LNX, LNY, LNZ, TETNEW, PHINEW, CDDIS(1), CL, AREF,
& ACCX, ACCY, ACCZ)

INTEGRATION OF FOR NEW POSITION AND VELOCITY

DESPX = ACCX*DELTAT
DESPY = ACCY*DELTAT
DESPZ = ACCZ*DELTAT
DEPOSX = 0.5*ACCX*DELTAT**2
DEPOSY = 0.5*ACCY*DELTAT**2

DEPOSZ = 0.5*ACCZ*DELTAT**2

POSXDIS = POSXDIS + DEPOSX + SPEEDX*DELTAT
POSYDIS = POSYDIS + DEPOSY + SPEEDY*DELTAT
POSZDIS = POSZDIS + DEPOSZ + SPEEDZ*DELTAT
SPEEDX = SPEEDX + DESPX
SPEEDY = SPEEDY + DESPY
SPEEDZ = SPEEDZ + DESPZ

ROTAT = ROTAT + 25.0*DELTAT

NEW POSITION IN POLAR COORDINATES

CALL POLAR (POSXDIS, POSYDIS, POSZDIS, RADIUS, TETNEW, PHINEW)

THETA = 90 - TETNEW* 180.0/PI

PHI = PHINEW*I80.0/PI

RANGE(l) = PHI
RANGE(2) = THETA

WRITE FLIGHT DATA INTO FILE

WR/TE(3,915) FLIGHTTIME,TAB,RADIUS-RADINIT,TAB,THETA,TAB,SPEED

IF (RADIUS.GE.0.7E+07) GOTO 9998
IF (RADIUS.LE.RADINIT) GOTO 9999

Page A8

C

C
END DO

C CALCULATE FLIGHT STATISTICS: MEAN VALUE OF ANGLE, AND SIGMA FOR

C DELTA RANGE, AND MAX ACCELERATION AND DYN. PRESSURE
C

9998 WRITE(*,*) 'SUCCESSFUL LANDING ON PLUTO'
C

9999 IF (ZAEHL.EQ. 1) THEN
WRITE (*,*) 'MEAN-LONGITUDE =', RANGE(I)

WRITE (*,*) ' MEAN-LATITUDE =', RANGE(2)
END IF

C

C

C

C
C
C

C
C
C

C
C
C
C
C

C
C

NOPO = ZAEHL - 1

IF (NOPO.EQ. I) THEN
MEAN(I) = RANGE(!)
STDEV(1) = 0

VAR(1) = 0
MEAN(2) = RANGE(2)
STDEV(2) = 0
VAR(2) = 0
MEAN(3) = ACCMAX
STDEV(3) = 0
VAR(3) = 0
MEAN(4) = DYNMAX
STDEV(4) = 0
VAR(4) = 0

ELSE IF (NOPO.GT.1) THEN
CALL STATISTICS(RANGE(l), NOPO, MEAN(l), STDEV(1), VAR(1))
CALL STATISTICS(RANGE(2), NOPO, MEAN(2), STDEV(2), VAR(2))
CALL STATISTICS(ACCMAX, NOPO, MEAN(3), STDEV(3), VAR(3))
CALL STATISTICS(DYNMAX, NOPO, MEAN(4), STDEV(4), VAR(4))

END IF

DELRANGE(1) = RANGE(1)- MEAN(l)
DELRANGE(2) = RANGE(2) - MEAN(2)

WRITE(*,*) 'Max Accel. =',ACCMAX, ' Max. Dyn.Pressure =',DYNMAX
WRITE(*,*) 'Flighttime =', FLIGHTTIME

WRITE(2,906) ZAEHL, TAB, RANGE(I), TAB, RANGE(2), TAB, ACCMAX,
& TAB, DYNMAX
IF (ZAEHL.EQ.RUNS) THEN

WRITE(*,910)
WRITE(*,911) ZAEHL,TAB,MEAN(1),TAB,VAR(1),TAB,STDEV(I)
WRITE(*,911) ZAEHL,TAB,MEAN(2),TAB,VAR(2),TAB,STDEV(2)

END IF

WRITE(I,913) ZAEHL,TAB,MEAN(1),TAB,STDEV(1),TAB,MEAN(2),TAB,
& STDEV(2),TAB,MEAN(3),TAB,STDEV(3),TAB,MEAN(4),TAB,STDEV(4)

WRITE(*,*) **

END OF ITERATION LOOP

END DO

END OF SIMULATION FOR ONE RUN

Appendix A: Flightsimulation Program Source Code Page A9

C
C

906 FORMAT(IX, I4, A1, G13.7, A1, G16.10, A1, G13.7, A1, G13.7)
C

910 FORMAT(1X,' CASE MEAN VARIANCE STANDARD DEVIATION')
911 FORMAT(IX, 14, A1, G13.7, A1, G10.4, AI, G10.4)
C

913 FORMAT(IX,I4,A1,G12.6,A 1,G12.6,A1,G12.6,A1,G12.6,
& A1,G12.6,A1,G12.6,A1,G12.6,A1,G12.6)

C

915 FORMAT(1X,I4,A i ,G 12.6,A i ,G 12.6,A 1 ,G 12.6)
C

CLOSE (UNIT = 1)
CLOSE (UNIT = 2)
CLOSE (UNIT = 3)

C
END

C

SUBROUTINE DIRECTION

& (SPEEDX, SPEEDY, SPEEDZ, LRX, LRY, LRZ, LNX, LNY, LNZ)
C

C

C

C
C

C

C

C

C

THE PURPOSE FO THIS SUBROUTINE IS TO CALCULATE THE DIRECTION
VECTORS FOR THE DRAG-COEFFICIENT CD AND THE LIFT-COEFFICIENT CL.
THE LIFT-COEFF. IS ASSUMED TO BE NORMAL TO CD.

REAL SPEEDX, SPEEDY, SPEEDZ, LRX, LRY, LRZ, LNX, LNY, LNZ
REAL X, Y, Z, MAGNIT

X = SPEEDX
Y = SPEEDY
Z = SPEEDZ

MAGNIT = SQRT(X**2 + Y**2 + Z**2)
IF (MAGNIT.EQ.0) MAGNIT = 1.0

LRX = X/MAGNIT
LRY = Y/MAGNIT
LRZ = Z/MAGNIT

LNX = 0.0
LNY = 0.0
LNZ = 0.0

SUBROUTINE FORCES

& (RADIUS, DENS, SPEED, MUE, MASS, LRX, LRY, LRZ,
& LNX, LNY, LNZ, TETNEW, PHINEW, CD, CL, AREF, ACCX, ACCY, ACCZ)

C

C

REAL RADIUS, DENS, SPEED, ACCX, ACCY, ACCZ, LRX, LRY, LRZ,
& LNX, LNY, LNZ, MUE, CD, CL, AREF(3), MASS, PHINEW, TETNEW

Page AIO

C
C
C
C
C

C

COMMON/PERFORM/ACCMAX, DYNMAX

THE PURPOSE OF THIS SUBROUTINE IS TO CALCULATE THE MAGNITUDES OF

THE GRAVITATIONAL, AND THE AERODYNAMIC FORCES. THE VALUES FOR
THE ACCELERATIONS ARE RETURNED.

REAL FORGRAV, AERO, AERODR, AEROLIF, ACC, DYN, DYNMAX, ACCMAX,
& GRX, GRY, GRZ, ADRX, ADRY, ADRZ, ALIFX, ALIFY, ALIFZ,
& AX, AY, AZ

C
C MAGNITUDES OF FORCES
C
C 1. GRAVITATIONAL FORCE
C

FORGRAV = MASS*MUE/RADIUS**2
C
C 2. AERODYNAMIC FORCES
C

DYN = 0.5*DENS*SPEED**2

AERO = DYN*AREF(1)
AERODR = AERO*CD
AEROLIF= AERO*CL

C
C
C
C
C
C
C

C
C
C
C

C

C
C
C

C

DIRECTION OF FORCES

1. GRAVITATIONAL FORCE

GRX = - FORGRAV*COS(PHINEW)*SIN(TETNEW)
GRY = - FORGRAV*SIN(PHINEW)* SIN(TETNEW)
GRZ = - FORGRAV*COS(TETNEW)

2. AERODYNAMIC FORCES

ADRX = - AERODR*LRX
ADRY = - AERODR*LRY
ADRZ = - AERODR*LRZ
ALIFX = AEROLIF*LNX
ALIFY = AEROLIF*LNY
ALIFZ = AEROLIF*LNZ

AX = ADRX + ALIFX
AY = ADRY + ALIFY
AZ = ADRZ + ALIFZ

TOTAL ACCELERATIONS

ACCX = (GRX + AX)/MASS
ACCY = (GRY + AY)/MASS
ACCZ = (GRZ + AZ)/MASS
ACC = SQRT(ACCX**2 + ACCY**2 + ACCZ**2)

IF (ACC.GT.ACCMAX) ACCMAX = ACC

Appendix A: Flightsimulation Program Source Code Page A 11

IF (DYN.GT.DYNMAX) DYNMAX = DYN
C

RETURN
END

SUBROUTINE DISPERSUNI (MEAN, DELTA, DISPERS)
C
C WHEN THIS SUBROUTINE IS CALLED, A RANDOM NUMBER AROUND THE MEAN
C "MEAN"+- THE TOLERANCE "DELTA" IS GENERATED. THE RANDOM NUMBER IS

C GENERATED IN THE FUNCTION "SRAN", FROM WHICH A NUMBER BETWEEN 0 - 1
C IS OBTAINED.
C

C

C

REAL MEAN, DELTA, DISPERS
COMMON/DISTRIB/IDUM
INTEGER*4 IDUM
REAL WERT

WERT = SRAN(IDUM)

DISPERS = MEAN + DELTA*(2.0*WERT - 1.0)
RETURN
END

SUBROUTINE DISPERSNOR (MEAN, SIGMA, DISPERS)
C
C IN THIS SUBROUTINE A NORMALLY DISTRIBUTED RANDOM NUMBER IS GENERATED
C AROUND THE MEAN "PARAM" WITH STANDARD DEVIATION OF SIGMA.

C

1

C

REAL MEAN, SIGMA, DISPERS
COMMON/DISTRIB/IDUM
INTEGER*4 IDUM
REAL WERT, V1, V2, R, FAC, GSET, GASDEV
DATA ISET/0/

IF (ISET.EQ.0) THEN
V1 = 2.0*SRAN(IDUM) - 1.0
V2 = 2.0*SRAN(IDUM) - 1.0
R = Vl**2 + V2"'2

IF (R.GE. 1.0.OR.R.EQ.0.) GOTO 1
FAC = SQRT (-2.0*LOG(R)/R)
GSET = VI*FAC
GASDEV = V2*FAC
ISET = 1

ELSE
GASDEV = GSET
ISET = 0

ENDIF
WERT = GASDEV

DISPERS = MEAN + SIGMA*WERT
RETURN

END

SUBROUTINE STATISTICS (VALUE, NOPO, MEAN, STDEV, VAR)

Page A12

C

C

C

C

REAL VALUE, MEAN, STDEV, VAR
INTEGER NOPO

THIS STATISTICS ROUTINE USES THE OLD VALUES OF MEAN, STANDARD
DEVIATION, AND VARIANCE AND UPDATES THE VALUES WITH THE NEW POINT

MEAN = (MEAN*(NOPO - 1) + VALUE)/NOPO

VAR = (VAR*(NOPO - 2) + (VALUE - MEAN)**2)/(NOPO - 1)
STDEV = SQRT(VAR)
RETURN
END

C+

C

C RealFunctionSRAN

C

C Purpose: Return a pseudo-random number between 0.0 and 1.0
C

C Reference:

C Numerical Recipes in FORTRAN
C by Press et. al
C
C ...

C Arguments Name Type Description
C

C Input: none
C

C Output: none
C

C Input/Output: IDUMS int dummy seed number
C
C ...

C Common Blocks: RANCOM
C
C Include Files: none
C
C Calls to: none

C ..

C Development History
C

C Author: Ravi P. Reddy
C Date: February 5, 1991
C
C Modifications:
C

C-

C

C
REAL FUNCTION SRAN (IDUMS)

REAL RM

INTEGER M, IA, IC
C

C PARAMETER(M = 6075, IA = 106, IC = 1283, RM = 1./M)
C PARAMETER(M=7875, IA=211,IC= 1663, RM= 1./M)
C PARAMETER(M = 7875, IA = 421, IC = 1663, RM = 1./M)

Appendix A: Flightsimulation Program Source Code Page A13

C

C

PARAMETER(M = 11979, IA = 430, IC = 2531, RM = 1./M)

INTEGER IDUMS, J, IR, ISEED
COMMON/RANCOM/ISEED, IR(97)

INTEGER IFF
DATA IFF/O/

C
C ..

C
C
C

C
C
C

C
C
C

100
C

Initialization

IF((1-FF.EQ.0).OR. (IDUMS.LT.0))THEN
IFF=I

IF(IDUMS.LT.0)IDUMS = -IDUMS
IF(IDUMS .GT. IC) IDUMS = 1111
IDUMS =MOD(IC-IDUMS,M)

Warming up

IDUMS=MOD(IA*IDUMS+IC,M)
IDUMS=MOD(IA*IDUMS+IC,M)
IDUMS=MOD(IA*IDUMS+IC,M)

Load the shuffling deck of numbers

DO 100 J=1,97
IDUMS=MOD(IA*IDUMS+IC,M)
IR(J)=IDUMS
CONTINUE

IDUMS=MOD(IA*IDUMS+IC,M)
ISEED=IDUMS

ENDIF
C ..

C
C Normal execution
C

J= 1+(97*ISEED)/M
IF(J.GT.97.OR.J.LT. 1)WRITE(2,*)' ERROR IN SRAN'

IDUMS=IR(J)
SRAN=IDUMS*RM

ISEED=MOD(IA*IDUMS+IC,M)
IR(J)=MOD(IA*ISEED+IC,M)

C
C

Page A14

C

C

C

C

C

C

C

C

C

NAME: CREATE_ORT_ARRAY

PURPOSE: CREATION OF 3-LEVEL ORTHOGONAL ARRAYS FROM

LATIN-SQUARES WITH 9, 27 OR 81 EXPERIMENTS

PROGRAMMER: UWE LAUTENSCHLAGER

DATE: 26 MARCH, 1992

VARIABLES:
C
C
C

INTEGER I, J, COUNT, OLDROW, OLDCOL, LATSQ1 (3,3), LATSQ2(3,3),
& NDESV

REAL ORTAR9(9,4), ORTAR27(27,13), ORTAR81 (81,40), ORTAR(81,40),
& OLD(81,40), LOWER(40), MIDDLE(40), UPPER(40), OA(81,40)

C

CREATE ARRAY FOR LATIN-SQUARE 1 (1,2,3)

C
C
C

LATSQI(1,1) = 1
LATSQ1 (1,2) = 2
LATSQI(1,3) = 3
LATSQ1 (2,1) = 2
LATSQI(2,2) = 3
LATSQI(2,3) = 1
LATSQI(3,1) = 3
LATSQI(3,2) = 1
LATSQ1 (3,3) = 2

C

CREATE ARRAY FOR LATIN-SQUARE 2 (3,2,1)

C
C
C

LATSQ2(1,1) = 1
LATSQ2(1,2) = 3
LATSQ2(1,3) = 2
LATSQ2(2,1) = 2
LATSQ2(2,2) = 1
LATSQ2(2,3) = 3
LATSQ2(3,1) = 3
LATSQ2(3,2) = 2
LATSQ2(3,3) = 1

C

C WE NEED THE FOLLOWING INFORMATION ABOUT THE VARIABLES:

C NDESV, LOWER AND UPPER BOUND, TOLERANCES
C

C CREATE ORTHOGONAL ARRAYS FROM LATIN SQUARES
C THE RULES ARE AS FOLLOWS:

Appendix A: Flightsimulation Program Source Code Page A15

C

C

C

C

C

C

C

C

0. TAKE THE COLUMN FROM THE SMALLER ARRAY TO CREATE 2 NEW
COLUMNS AND 2X NEW ROWS

1. BLOCK1 (1.1/3 ROWS): TAKE OLD VALUE 2X FOR NEW COLUMNS
2. BLOCK2(2. 1/3 ROWS): TAKE OLD VALUE, USE LATSQ1 FOR NEW COLUMNS
3. BLOCK2(3.1/3 ROWS): TAKE OLD VALUE, USE LATSQ2 FOR NEW COLUMNS
4. COLUMNI : DEVIDE EXPERIMENTS INTO GROUPS OF 1,2,3

OLD(l,1) = 1
OLD(2,1) = 2
OLD(3,1) = 3
OLDROW = 3
OLDCOL = I

C
C********* _,)_)_, _)_ e _ _*************e_***)_**)_ _(_***** e)_ • ee_** 11,_***:_)_** _(_

C
C

C

C

C

C

C

C

C

C

C

DO 100 COUNT = 1, 3
DO 20 1 = 1, OLDROW

DO 20 J = 1, OLDCOL

BLOCK1

IF (OLD(IJ).EQ. 1) THEN
ORTAR(I,J*3-1) = 1
ORTAR(I,J*3) = 1
ORTAR(I,J*3+I) = 1

ELSE IF(OLD(I,J).EQ.2) THEN
ORTAR(I,J* 3-1) = 2
ORTAR(I,J*3) = 2
ORTAR(I,J*3+I) = 2

ELSE IF(OLD(I,J).EQ.3) THEN
ORTAR(I,J* 3-1) = 3
ORTAR(I,J*3) = 3
ORTAR(I,J* 3+ 1) = 3

END IF

ORTAR(I,I) = I

BLOCK2

IF (OLD(I,J).EQ. 1) THEN
ORTAR(I+OLDROW,J*3-1) = LATSQ 1(1,1)
ORTAR(I+OLDROW,J* 3) = LATS Q 1(1,2)
ORTAR(I+OLDROW,J* 3+ 1) = LATS Q I (1,3)

ELSE IF(OLD(I,J).EQ.2) THEN
ORTAR(I+OLDROW,J* 3 - 1) = LATSQ 1(2,1)
ORTAR(I+OLDROW,J* 3) = LATSQ 1(2,2)
ORTAR(I+OLDROW,J*3+I) = LATSQ1 (2,3)

ELSE IF(OLD(I,J).EQ.3) THEN
ORTAR(I+OLDROW,J* 3-1) = LATSQ 1(3,1)
ORTAR(I+OLDROW,J* 3) = LATSQ 1(3,2)
ORTAR(I+OLDROW,J*3+ 1) = LATSQ 1(3,3)

END IF

ORTAR(I+OLDROW, 1) = 2

Page A 16

C
C

C

C
20

C

C

C
30

C

BLOCK3

IF (OLD(I,J).EQ. 1) THEN
ORTAR(I+2*OLDROW,J* 3-1) = LATSQ2(1, t)
ORTAR(I+2*OLDROW,J*3) = LATSQ2(1,2)
ORTAR(I+2*OLDROW,J* 3+ 1) = LATSQ2(1,3)

ELSE IF(OLD(I,J).EQ.2) THEN
ORTAR(I+2*OLDROW,J* 3-1) = LATSQ2(2,1)
ORTAR(I+2*OLDROW,J*3) = LATSQ2(2,2)

ORTAR(I+2*OLDROW,J*3+I) = LATSQ2(2,3)
ELSE IF(OLD(I,J).EQ.3) THEN

ORTAR(I+2*OLDROW,J*3-1) = LATSQ2(3,1)

ORTAR(I+2*OLDROW,J*3) = LATSQ2(3,2)
ORTAR(I+2*OLDROW,J*3+ 1) = LATSQ2(3,3)

END IF

ORTAR(I+2*OLDROW, 1) = 3

CONTINUE

OLDROW = 3*OLDROW
OLDCOL = 3*OLDCOL + 1

DO 30 1= 1, OLDROW
DO 30 J = 1, OLDCOL

IF (COUNT.EQ.I) THEN
ORTAR9(I,J) = ORTAR(I,J)
OLD(I,J) = ORTAR(I,J)

ELSE IF (COUNT.EQ.2) THEN
ORTAR27(I,J) = ORTAR(I,J)
OLD(I,J) = ORTAR(I,,I)

ELSE IF (COUNT.EQ.3) THEN
ORTAR81 (I,J) = ORTAR(I,J)

END IF

CONTINUE

C

C

C

C

ASSIGN VARIABLE VALUES TO ORTHOGONAL ARRAYS

OLDCOL = NDESV

IF (NDESV.LE.4) THEN
CASE = 1
OLDROW = 9

ELSE IF ((NDESV.GT.4).AND.(NDESV.LE. 13)) THEN
CASE = 2
OLDROW = 27

ELSE
CASE = 3
OLDROW = 81

END IF

DO 1101 = 1, OLDROW

Appendix A: Flightsimulation Program Source Code Page A17

DO 110 J = 1, OLDCOL

C

IF (CASE.EQ. 1) THEN
ORTAR(I,J) = ORTAR9(I,4 - OLDCOL + J)

ELSE IF (CASE.EQ.2) THEN
ORTAR(I,J) = ORTAR27(I,13 - OLDCOL + J)

ELSE iF (CASE.EQ.3) THEN
ORTAR(I,J) = ORTAR81(I,40 - OLDCOL + J)

ENDIF

IF (ORTAR(I,J).EQ. 1) THEN
ORTAR(I,J) = LOWER(J)

ELSE IF (ORTAR(I,J).EQ.2) THEN
ORTAR(I,J) = MIDDLE(J)

ELSE

ORTAR(I,J) = UPPER(J)
END IF

C
110 CONTINUE

C
OPEN (UNIT = 7, FILE = 'expefi.check', STATUS = q_INKNOWN')

C

C

WRITE(7,901) NDESV, OLDROW
WRITE(7,903) (I, I = 1, NDESV)
WRITE(7,904) ('-', I = 1, 12*NDESV + 6)

DO 1201 = 1, OLDROW
WRITE(7,902) I, (ORTAR(I,OLDCOL+J-NDESV), J = 1, NDESV)
DO 130 J = 1, NDESV

OA(I,J) = ORTAR(I,OLDCOL+J-NDESV)
130 CONTINUE
120 CONTINUE

C
901 FORMAT(IX, 'NUMBER OF VARIABLES: 'I2,3X,WUMBER OF EXPERIMENTS: ',

& I2,/)
902 FORMAT(2X, I3, 5X, 40(1X,G11.5))

903 FORMAT(1X,'EXP.',40I 12,/)
904 FORMAT(IX, 172A1)

C

CLOSE (UNIT = 7)
C

RETURN
END

SUBROUTINE LEVELSNOR (MEAN, SIGMA, LOWER, MIDDLE, UPPER)

C PROVIDES VALUES FOR LOWER, MIDDLE, AND UPPER BOUND; NORMAL DISTR.

C
C ARGUMENTS:
C
C_:____ _____

C
C LOCAL VARIABLES:
C

REAL MEAN, SIGMA, LOWER, MIDDLE, UPPER
C

Page A18

C

C SPECIFY LOWER, MIDDLE AND UPPER VALUES
C

LOWER = MEAN - SQRT(1.5)*SIGMA
MIDDLE = MEAN

UPPER = MEAN + SQRT(1.5)*SIGMA
C

RETURN
END

SUBROUTINE LEVELSUNI (MEAN, DELTA, LOWER, MIDDLE, UPPER)
C_________

C PROVIDES VALUES FOR LOWER, MIDDLE, AND UPPER BOUND; UNIFORM DISTR.

C
C ARGUMENTS:
C

C_________

C
C LOCAL VARIABLES:
C

REAL MEAN, DELTA, LOWER, MIDDLE, UPPER
C
C_________

C
C
C

C

SPECIFY LOWER, MIDDLE AND UPPER VALUES

LOWER = MEAN - DELTA
MIDDLE = MEAN
UPPER = MEAN + DELTA

RETURN
END

SUBROUTINE POLAR (POSX, POSY, POSZ, RAD, TET, PHI)

C CALCULATES POSITION STATE PARAMETERS IN POLAR COORDINATES

C
C ARGUMENTS:
C
C__________

C
C LOCAL VARIABLES:
C

REAL POSX, POSY, POSZ, RAD, TET, PHI, ARGU, PI
C
C_:_:_:_:_:_:_ _:_ _ _ _:__ __:_ _ _ _ __

C
C

C

C
C
C

SPECIFY LOWER, MIDDLE AND UPPER VALUES

PI = 3.1415927

CALCULATION OF RADIUS

RAD = SQRT(POSX**2 + POSY**2 + POSZ**2)

Appendix A: Flightsimulation Program Source Code Page A19

C
C
C

C

C

C

C

C

CALCULATION OF PHI (PHI = ARCTAN(Y/X))

IF (POSX.NE.0) THEN
ARGU = POSY/POSX

PHI = ATAN(ARGU)
ELSE IF (POSY.GT.0) THEN

PHI = PI/2.0
ELSE

PHI = PI* 1.5
END IF

IF (POSX.LT.0) THEN

IF (POSY.GE.0) THEN
PHI = PHI + PI

ELSE IF (POSY.LT.0) THEN
PHI = PHI - PI

END IF
END IF

CALCULATION OF THETA (THETA = ARCCOS(Z/R)

TET = ACOS(POSZ/RAD)

RETURN
END

SUBROUTINE POSIT (LONGIT, LATIT, RADIUS, POSX, POSY, POSZ)

C CALCULATES POSITION STATE PARAMETERS IN POLAR COORDINATES

C
C ARGUMENTS:
C

C

C LOCAL VARIABLES:

C

REAL RADIUS, LONGIT, LATIT, POSX, POSY, POSZ, PI, PHI, TET
C

C
PI = 3.1415927

C

C

C

PHI = LONGIT*PI/180.0
TET = PI/2.0 - LATIT*PI/180.0

POSX = RADIUS*COS(PHI)*SIN(TET)
POSY = RADIUS*SIN(PHI)*SIN(TET)
POSZ = RADIUS*COS(TET)

RETURN
END

SUBROUTINE VELOC (LONGIT, LATIT, FLIPA, AZIMU, SPEED,
& VELX, VELY, VELZ)

Page A20

C
C
C

LOCAL VARIABLES:

REAL LONGIT, LATIT, FLIPA, AZIMU, SPEED, H, PHI, TET,
& VELU, VELV, VELW, VELX, VELY, VELZ

C
C_________

C
PI= 3.1415927

C

C

C

C

PHI = LONGIT*PI/180.0
TET = PI/2.0 - LATIT*PI/180.0

VELU = SPEED*COS(FLIPA)*COS(AZIMU)
VELV = SPEED*COS(FLIPA)*SIN(AZIMU)
VELW = SPEED*SIN(FLIPA)

VELX = COS(PHI)*(-VELU*COS(TET) + VELW*SIN(TET)) + VELV*SIN(PHI)
VELY = SIN(PHI)*(-VELU*COS(TET) + VELW*SIN(TET)) - VELV*COS(PHI)
VELZ = VELU*SIN(TET) + VELW*COS(TET)

RETURN
END

Appendix A: Flightsimulation Program Source Code Page A21

Flightsimulation Data-file: flightsim.dat

DATA FILE FOR FLIGHTSIMULATION

Created by : UWE LAUTENSCHLAGER
Date : 10 JUNE 1992
Comment: GOOD LUCK

..

I : '0' for random Nunber or' 1' for Orthogonal Arrays
13 : number of design variables, or number of columns
37571 200 : # of skipped random numbers, # of dispersed runs
9946.5 : initial speed(m/s) (9946.5)

1560.0 : mass (1560)
-5.88 t 4 180.0 : inertial flightpath(deg), inertial azimuth (deg) -5.8814

-106.65 44.2 : longitude (deg), geodetic latitude (deg) 44.314
..

Please specify the all the tolerances for the parameters. Enter
either the 3-sigma value in % of the mean for normally dispersed

parameters or the tolerance in % for uniformly dispersed parameters.
In the second column, enter the column to be used in the OA

..

0.1 9 : absolute tolerance in (deg) for longitude
0.05 7
250.0 6
0.05 2
0.1 1
0.15 3
0.0075 5
0.01 8
0.02 4

: absolute tolerance in (deg) for latitude
: absolute tolerance in (m) for radius
: mass tolerance (0.05)

: density 3-sigma (0.3)
: drag-coefficent 3-sigma (0.05)

: flightpath 3-sigma
: azimuth 3-sigma
: initial velocity 3-sigma

Please note that dispersions are 1-2 % for the initial state parameters.

Page A22

Appendix B

Flightsimulation Program Source Code

This appendix contains a short description of the program ANOVA.

Appendix B: Description of the ANOVA Program Page B1

ANOVA

General Description:

The program ANOVA is a prototypical tool to perform analysis of variance on exper-
imental results obtained by using orthogonal arrays.

File Structure:

This program requires two input files:

Q One file which contains the standard orthogonal array corresponding to the OA

used in the experimentation. There are currently three OA files implemented:
oaLS.dat, oaL9.dat, and oaL27.dat, which correspond to an L8, L9, and L27 matrix

experiment, respectively.

Q One file which contains the result file from the experiment. The current choice is
the output file from the XPLORE facility in DSIDES, the standard output file
from the simulation program FLUG, and a general one column result file. The
format of this file will be discussed later.

The program prints the result from the anova calculation both to the screen and to a file
called "anova.out".

Assumptions:

The results on which the analysis of variance are performed are assumed to be obtained
by using experiments prescribed by a suitable orthogonal array. The following assump-
tions are made:

Q The number of variables in the experiment should be less than the number of
columns in the OA, minus one. This is because we want to dedicate at least one
column in the OA to estimate the error term.

The variables should be assigned to the first columns of the OA. (The theory
would work just as well if the variables were assigned to the last columns--in the
program we have just made a choice.)

The code:

The ANOVA program is programmed in ANSI C:

The code consists of three files:

Page B2

anova, c contains the main routine and subroutine specific to this program (reading
the files, calculating the anova table for the OA, etc.)

anovaLib.c Contains various subroutines which are called from anova.c (initialization
of vectors and matrices, beta- and gamma-functions, etc.)

anova.h is a headerfile which is included in both of the other files and consists

mainly of function declarations.

At SDL the program was compiled by:

sdl> acc anova.c anovaLib.c -o anova -lm -g

The experiment result file:

As mentioned earlier, the program is made to read three different types of result files.
But it can relatively easily be changed to read and result file.

E.g., the standard output file from FLUG consists of five columns. The first column is
the experiment number, the second and third columns are the longitudinal and latitudinal
landing position, respectively, and the fourth and fifth columns are other output data that
we do not use in the anova calculation.

1 -106.6500 33.60182571 130.6447 92639.22
2 -106.9348 33.52516174 130.2403 89573.64
3 -106.6500 33.58375921 130.7231 89907.05
4 -106.3649

oo..,,.o

In the file reading routine, which in this case is found in the subroutines redResult0 in

"anova.c", the results are read into the vectors res.Long and res.Lat, respectively. The
other information in the file, which is not used for the anova calculations, is just read into
dummy variables.

if ((fpl=fopen(fileName, "r"))==NULL) {
printf("knError reading file %s".fileName);
exit (1);

}

for (i=0;i<*noExp;i++) {
fscanf(fp 1,"%d",&dummyI);
fscanf(fp 1,"%f",resLong+i);
fscanf(fpl,"%f",resLat+i);

fscanf(fpl,"%f",&dummyF);
fscanf(fpl,"% f",dummyF);

}

Appendix B: Description of the ANOVA Program Page B3

fclose(fpl);

For another format on the result file, this reading sequence can be changed by just adding

or deleting fscanf sentences.

The orthogonal array file:

The orthogonal array file will provide the program with the level settings for the orthog-
onal experiment used to produce the results. The file looks like (oaL27.dat):

3 13 27

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
1.0 2.0 2.0 2.0 1.0 1.0 1.0 2.0 2.0 ...

The first three numbers are the "particulars" for this OA. In this case, they represent
three levels, a maximum of 13 variables, and 27 experiments, respectively.

Page B4

Appendix C

ANOVA Program Source Code

This appendix contains the source code for the ANOVA program. The code is written in
ANSI C. The code consists of three files: anova.c includes the main routine and the

ANOVA subroutines, anovaLib.c includes several library routines for the program, and
anova.h is a headerfile where constants, functions, include-files, etc. are declared.

Appendix C: ANOVA Program Source Code Page C1

anova.h

Name: Stein Ove Erikstad
Date: June 1992
Source:

The source code of the program is in tree files:

anova.h
anova.c

anovaLib.c

header file for the program
the main function, and some program specific
functions

some library function used by the program

This program calculates a ANOVA table from an orthogonal array.

The program requires two input files:

oa.out - which contains the orthogonal array to be used
ortpoint.out - which contains the results from the experiments

referred to in oa.out

... */

/* Functions in anova.c */

float **readOA0;
void readResult0;
void readExplore0;
void readGenResFile0;
void anova0;
void printAnovaTable0;
int pool();
void confIntMean0;

/* Functions in anovaLib.c */

float *vector();
int *vectorI();
float **matrix();
void freeVector0;
void freelVector0;
void freeMatrix0;
void errMess0;
void descrData0;
void writeMatrix0;

float gammaln0;
float betacf0;
float fvalue0;
float betai0;

Page C2

anova.c

Name: Stein Ove Erikstad
Date: June 1992
Source:

The source code of the program is in tree files:

anova.h header file for the program
anova.c the main function, and some program specific

functions

anovaLib.c some library function used by the program

This program calculates a ANOVA table from an orthogonal array.

The program requires two input files:

oa.out - which contains the orthogonal array to be used
ortpoint.out - which contains the results from the experiments

referred to in oa.out

... _/

/* Functions in anova.c */

float **readOA0;
void readResult0;
void readExplore0;
void readGenResFile0;
void anova0;
void printAnovaTable0;
int pool();
void conflntMean0;

/* Functions in anovaLib.c */

float *vector();
int *vectorI0;
float **matrix();
void freeVector0;
void freelVector0;
void freeMatrix0;
void errMess0;
void descrData0;
void writeMatrix0;
float gammaln0;
float betacf0;
float fvalue0;
float betai0;

Appendix C: ANOVA Program Source Code Page C3

anovaLib.c
.. _

#include <stdio.h>

#include <math.h>
#include "anova.h"

#define ITMAX 200
#define EPS 3.0e-7

_t ..

MATRIX

matrix allocates storage to a matrix with float
elements, and with size nrow, ncol. The function

returns a pointer to an array of pointers to the rows

Name: Stein Ove Erikstad

Date: May 1992
Source: Based on function in Numerical Recipies in C

.. _//

float **matrix(nrow,ncol)
int nrow, ncol;

[
int i;
float **m;

m=(float **) malloc((unsigned) (nrow+ 1)* sizeof(float*));
if (!m) errMess("Allocation error in matrix()");

for (i=0;i<=nrow;i++) {
m[i]=(float *) malloc((unsigned) (ncol+l)*sizeof(float));
if (!m[i]) errMess("Allocation failure in matrix()");

]
return m;

_ ..

ERRMESS

errMess writes an error message given in errText
to stderr.

Name: Stein Ove Erikstad

Date: May 1992
Source: Based on function in Numerical Recipies in C

.. _

void errMess(errText)
char errText[];

(
fprintf(stderr,"A run-time error is discovered....kn");
fprintf(stderr,"%shf',errText);
fprintf(stderr,"...aborting system....ha");
exit(1);

t
_ ...

VECTOR

Page C4

vector allocates storage to a vector with float
elements, and with size nelem. The function
returns a pointer to the first element

Name: Stein Ove Erikstad

Date: May 1992

Source: Based on function in Numerical Recipies in C
.. _]/

float *vector(nelem)
int nelem;

l
float *v;

v=(float *) malloc((unsigned) (nelem+l)*sizeof(float));
if (!v) errMess("Allocation failure in vector()");
return v;

}
int *vectorI(nelem)

int nelem;
{

int *v;
v=(int *) malloc((unsigned) (nelem+l)*sizeof(int));
if (!v) errMess("Allocation failure in vectorI0");
return v;

}
]t_ ..

FREE

vector frees storage to a vector with float
elements, and with size nelem.

Name: Stein Ove Erikstad

Date: July 1992
Source: Based on function in Numerical Recipies in C

.. _[

void freeVector(v,nelem)
float *v;

int nelem;

free((char*)v);
}
void freelVector(v,nelem)

int *v,nelem;
{

free((char*)v);

void freeMatrix(m,nrow,ncol)
float **m;

int nrow,ncol;
{

int i;

for (i=nrow;i>=O;i--) free((char*)m[i]);
free((char*)m);

_ ...

WRITEMATRIX

writeMatrix prints a matrix row by row from the standard

Appendix C: ANOVA Program Source Code Page C5

output. Each row element is separated by a whitespace,
and each row is terminated by CR.

Input: m adress of upper left comer of matrix
mow no. of rows
ncol no. of columns

Name: Stein Ove Erikstad

Date: May 1992
Source: None

.. _/t

void writeMatrix(m,nrow,ncol)
float **m;
int nrow,ncol;

{
int i,j;

for (i=0;i<nrow;i++) {
printf("kn");
for (j=0;j<ncol;j++) {

printf("\t%5.2f",*(*(m+i)+j));
}

}
return;

[_

DESCRDATA

descrData receives an array of data, and returns
a statistical description of these data: mean,
variance, etc.

Name: Stein Ove Erikstad

Date: May 1992
Source: Based on moment() in Numerical Recipies in C

.. 3g[

void descrData(data,n,sum,sqsum,mean,adev,var,writeFlag,fp)

int n,writeFlag;
float data[],*sum,*sqsum,*mean,* adev,*var;

FILE *fp;

intj;
float s,p,sn;

*adev=(*var)=(* sum)=(* sqsum)=0.0;

if (n<=l) errMess("No, of data pts. must be at least two");
for (j=0;j<n;j++) {

*sum += data[j];
*sqsum += data[j]*data[j];

}
*mean=*sum/n;

for (j=0;j<n;j++) {
*adev += fabs(s=data[j]-(*mean));
*var += (p=s*s);

}
*var/= (n-l);

Page C6

sn=10.0*logl0(((*mean)*(*mean))/(*var));

if (writeFlag) {
fprintf(fp,"\nkn\t\tDESCRIPTION OF DATA");
fprintf(fp,"\n\t\t ");
fprintf(fp,"_\tNumber of points:\t% 12d",n);
fprintf(fp,'_n\tMean:\t\t\t% 12.4f',*mean);
fprintf(fp,"\n\tStandard deviation:\t% 12.4f',sqrt(*var));
fprint f(fp,"_n\tVariance:\t\t % 12.4f",*var);
fprint f(fp,"kn\t Sum:\t\t\t % 12.4f',* sum);
fprintf(fp,"_\tSum of squares:\t\t% 12.4f",*sqsum);
fprintf(fp,"\n\tSignal-to-Noise ratio:\t% 12.4t",sn);
fprintf(fp,"kn");
for (j=l ;j<=3;j++) fprintf(fp,

"kn\tlnterval mean +/- %d*st.dev.:\t(%8.4f,%8.4f)",

j,*mean-j*sqrt(*var),*mean+j*sqrt(*var));
}
return;

/*###
MYFUNC.C

contains several useful functions, which is

commonly used in other routines. The functions
are."

- the gamma function
- the continued fraction beta function

- the incomplete beta function
- F probability distribution function

.. _

/_ ...

GAMMA FUNCTION

This function take a value xx, xx>l, and returns

the natural logaritm of the gamme function of
the value.

Name: Stein Ove Erikstad
Date: June 1992

Source: Numerical Recipies in C, p. 169
.. _/

float gammaln(xx)
float xx;

(
double x,temp,ser;
static double coeff[6] = {76.18009173,-86.50532033,

24.01409822,- 1.231739516,
0.120858003e-2,-0.536382e-5 };

intj;

x=xx-l.0;
temp=x+5.5;
temp-=(x+0.5)*log(temp);
ser=l.0;

Appendix C: ANOVA Program Source Code Page C7

for(j=0;j<=5;j++) {
x+=l.0;
ser+=coeff[j]/x;

}
return -temp+log(2.50662827465*ser);

CONTINUED FRACTION BETA FUNCTION
used in betai

Name: Stein Ove Erikstad
Date: June 20 1992

Source: Numerical Recipies in C, p.180
... _/

float betacf(a,b,x)
float a,b,x;

!
float qap,qam,qab,em,tem,d;
float bz, bm= 1.0,bp,bpp;
float az=l.0,am= 1.0,ap,app,aold;
int m;

qab=a+b;
qap=a+ 1.0;
qam=a-l.0;
bz=1.0-qab*x/qap;
for (m=l ;m<=ITMAX;m++) {

em=(float) m;
tem=em+em;
d=em*(b-em)*x/((qam+tem)*(a+tem));
ap=az+d*am;
bp=bz+d*bm;

d = -(a+em)* (qab+em)*x/((qap+tem) *(a+tem));
app=ap+d*az;
bpp=bp+d*bz;
aold=az;

am=ap/bpp;
bm=bp/bpp;
az=app/bpp;
bz=l.0;
if (fabs(az-aold) < (EPS*fabs(az))) return az;

}
errMess("a or b too big, or ITMAX too small in BETACF");

INCOMPLETE BETA FUNCTION

Name: Stein Ove Erikstad
Date: June 1992

Source: Numerical Recipies in C
.. _/

float betai(a,b,x)
float a,b,x;

l
float bt;

Page C8

if (x<0.0 IIx>1.0) errMess("Bad x in routine BETAI");
if (x==0.011x== 1.0) bt=0.0;
else

bt=exp(gammaln(a+b)-gammaln(a)-gammaln(b)+a*log(x)+b*log(1.0-x));
if (x < (a+1.0)/(a+b+2.0))

return bt*betacf(a,b,x)/a;
else

return 1.0-bt*betacf(b,a,1.0-x)/b;

* ...

F PROBABILITY FUNCTION

Takes the degrees of freedom, dfl and df2, and the
confidence level alpha, and returns the F value (if

the F value is >= 1.0).

The function is based on a serch using the incomplete
beta function. The algoritm searches first upwards from
the initial value of f (1.0) until a upper limit of f
is found. Then the f value is stepwise bracketed by

comparing the output from the betai-function with the
desired f-value. The procedure stops when the difference
between the desired and calculated aplha value is less

than the accuracy level

Name: Stein Ove Erikstad
Date: June 1992
Source:

... *[

float fvalue(dfl,df2,alpha)
float dfl ,df2,alpha;

{
float f,fmin 1,fmin2,accuracy=0.0005,step=5.0,a;
int it=0,itmax=20;

f=fmin 1=fmin2= 1.0;

a=betai(df2*0.5,dfl *0.5,df2/(df2+dfl *f));

if (a<alpha)
printf('%rtF< 1.0, a=%8.3f",a);

else {
while((a>alpha)&&(it<itmax)) {

it++;

f += it*step;
a=betai(df2*0.5,dfl *0.5,df2/(df2+dfl *f));

}
fminl=f;
while((abs(alpha-a) > accuracy)&&(it<itmax)) {

it++;

if (a > alpha)
f+=0.5*fabs(fmin 1-fmin2);

else
f-=0.5* fabs(fmin 1-fmin2);

fmin2=fmin 1;
fminl=f;

Appendix C: ANOVA Program Source Code Page C9

t
return f;

a=betai(df2*O.5,dfl *0.5,df2/(df2+dfl *f));

Page C10

Form Approved
REPORT DOCU M ENTATION PAG E OMSMo.0 04-018a

Public repOrting b_rden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of informatl
including suggestiOnS for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, OC 20503.

1. AGENCY USEONLY (Leave b/ank) I 2. REPORTDATE I 3. REPORTTYPEANDDATESCOVERED

I October1993 1 ContractorReport
5. FUNDING NUMBERS

NAG 9-616
4. TITLEANDSUBTITLE

SimulationReductionUsing theTaguchi Method

6.AUTHOR(S)
Farrokh Mistree,Ume Lautenschlager,SteinOwe Erikstad,
Janet K. Allen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UniversityofHouston
480 Calhoun

Houston,Texas

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

Lyndon B.Johnson Space Center
Houston, TX 77058

8. PERFORMING ORGANIZATION =
REPORT NUMBER
S-734

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
NASA CR 4542

11. SUPPLEMENTARY NOTES

Farrokh Mistree,Ume Lautenschlager,SteinOwe Erikstad,Janet K. Allen,UniversityofHouston

12a. DISTRIBUTION/AVAILABILITY STATEMENT
NationalTechnicalInformationService

5285 PortRoyal Road

Springfield,VA 22161
(703)487-4600

Subject Category: 66

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A largeamount ofengineeringeffortisconsumed inconductingexperimentstoobtaininformationneededfor

making designdecisions.Efficiencyingeneratingsuchinformationisthekey tomeeting market windows,

keepingdevelopmentand manufacturingcostslow,and havinghigh-qualityproducts.

The principal focus of this project is to develop and implement applications of Taguchi's quality engineering
techniques. In particular, we show how these techniques are applied to reduce the number of experiments
for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters
simultaneously with a minimum of time and resources. Taguchi's signal-to-noise ratio is being employed to
measure quality. A comprise Decision Support Problem and Robust Design are applied to demonstrate how
quality is designed into a product in the early stages of designing.

14.

17.

SUBJECTTERMS

decisionmaking; qualitycontrol;trajectoryanalysis;simulation;Monte CarloMethod;

Taguchi Method; orthogonalfunction

SECURITY CLASSIFICATION I 18. SECURITY CLASSIFICATION I

OF REPORT J OF THIS PAGE IUnclassified Unclassified

Standard Form 298 (Rev. 2-89)
Prescribed by ANSi Std. 239-18
298-102

19. SECURITYCLASSIFICATION
OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
162

16. PRICECODE

20. LIMITATION OF ABSTRACT
UL

